

Exercise 1. Verify that each of the following functions is a solution of the two-dimensional Laplace equation $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial t^2}$

$$\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} = 0.$$

a. $u(x,y) = x^3 - 3xy^2$ b. $u(x,y) = \frac{1}{2}\ln(x^2 + y^2)$ c. $u(x,y) = e^{x^2 - y^2}\cos 2xy$

Exercise 2. Let F and G be twice-differentiable functions of one variable. Show that

$$u(x,t) = F(x+ct) + G(x-ct)$$
 (1)

is a solution to the one-dimensional wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}.$$
(2)

Exercise 3. Use the previous exercise to find a solution of the wave equation (2) with initial data

$$u(x,0) = \frac{1}{1+x^2}$$
, $u_t(x,0) = 0$, $-\infty < x < \infty$.

[*Hint*: If u is given by (1), these two conditions yield a pair of equations in the unknown functions F and G. Solve these equations to determine F and G.]

Assignment 1 Due January 17