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The heat equation with Neumann boundary conditions

Our goal is to solve:

ut = c2uxx , 0 < x < L , 0 < t, (1)

ux(0, t) = ux(L, t) = 0, 0 < t, (2)

u(x , 0) = f (x), 0 < x < L. (3)

As before, we will use separation of variables to find a family of
simple solutions to (1) and (2), and then the principle of

superposition to construct a solution satisfying (3).
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Separation of variables

Assuming that u(x , t) = X (x)T (t), the heat equation (1) becomes

XT ′ = c2X ′′T .

This implies
X ′′

X
=

T ′

c2T
= k,

which we write as

X ′′ − kX = 0, (4)

T ′ − c2kT = 0. (5)

The initial conditions (2) become X ′(0)T (t) = X ′(L)T (t) = 0, or

X ′(0) = X ′(L) = 0. (6)
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Case 1: k = µ2 > 0

The ODE (4) becomes X ′′ − µ2X = 0 with general solution

X = c1e
µx + c2e

−µx .

The boundary conditions (6) are

0 = X ′(0) = µc1 − µc2 = µ(c1 − c2),

0 = X ′(L) = µc1e
µL − µc2e

−µL = µ(c1e
µL − c2e

−µL).

The first gives c1 = c2. When we substitute this into the second
we get

2c1µ sinhµL = 0.

Since µ,L > 0, we must have c1 = c2 = 0. Hence X = 0, i.e. there

are only trivial solutions in the case k > 0.
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Case 2: k = 0

The ODE (4) is simply X ′′ = 0 so that

X = Ax + B .

The boundary conditions (6) yield

0 = X ′(0) = X ′(L) = A.

Taking B = 1 we get the solution

X0 = 1.

The corresponding equation (5) for T is T ′ = 0, which yields
T = C . We set

T0 = 1.

These give the zeroth normal mode:

u0(x , t) = X0(x)T0(t) = 1.
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Case 3: k = −µ2 < 0

The ODE (4) is now X ′′ + µ2X = 0 with solutions

X = c1 cos µx + c2 sinµx .

The boundary conditions (6) yield

0 = X ′(0) = −µc1 sin 0 + µc2 cos 0 = µc2,

0 = X ′(L) = −µc1 sinµL + µc2 cos µL.

The first of these gives c2 = 0. In order for X to be nontrivial, the
second shows that we also need

sinµL = 0.
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Case 3: k = −µ2 < 0

This can occur if and only if µL = nπ, that is

µ = µn =
nπ

L
, n = ±1,±2,±3, . . .

Choosing c1 = 1 yields the solutions

Xn = cos µnx , n = 1, 2, 3, . . .

For each n the corresponding equation (5) for T becomes
T ′ = −λ2

nT , with λn = cµn. Up to a constant multiple, the
solution is

Tn = e−λ2
nt .
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Normal modes and superposition

Multiplying these together gives the nth normal mode

un(x , t) = Xn(x)Tn(t) = e−λ2
nt cos µnx , n = 1, 2, 3, . . .

where µn = nπ/L and λn = cµn.
The principle of superposition now guarantees that for any choice
of constants a0, a1, a2, . . .

u(x , t) = a0u0 +
∞
∑

n=1

anun = a0 +
∞
∑

n=1

ane
−λ2

nt cos µnx (7)

is a solution of the heat equation (1) with the Neumann boundary
conditions (2).
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Initial conditions

If we now require that the solution (7) satisfy the initial condition
(3) we find that we need

f (x) = u(x , 0) = a0 +

∞
∑

n=1

an cos
nπx

L
, 0 < x < L.

This is simply the cosine series expansion of f (x). Using our
previous results, we finally find that if f (x) is piecewise smooth
then

a0 =
1

L

∫

L

0

f (x) dx , an =
2

L

∫

L

0

f (x) cos
nπx

L
dx , n ≥ 1.
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Conclusion

Theorem

If f (x) is piecewise smooth, the solution to the heat equation (1)
with Neumann boundary conditions (2) and initial conditions (3) is

given by

u(x , t) = a0 +

∞
∑

n=1

ane
−λ2

nt cos µnx ,

where

µn =
nπ

L
, λn = cµn,

and the coefficients a0, a1, a2, . . . are those occurring in the cosine

series expansion of f (x). They are given explicitly by

a0 =
1

L

∫

L

0

f (x) dx , an =
2

L

∫

L

0

f (x) cos
nπx

L
dx , n ≥ 1.
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Example 1

Example

Solve the following heat conduction problem:

ut =
1

4
uxx , 0 < x < 1 , 0 < t,

ux(0, t) = ux(1, t) = 0, 0 < t,

u(x , 0) = 100x(1 − x), 0 < x < 1.

With L = 1, µn = nπ and f (x) = 100x(1 − x) we find

a0 =

∫ 1

0

100x(1 − x) dx =
50

3

an = 2

∫ 1

0

100x(1 − x) cos nπx dx =
−200(1 + (−1)n)

n2π2
, n ≥ 1.
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Example 1

Since c = 1/2, λn = nπ/2. Plugging everything into our general
solution we get

u(x , t) =
50

3
−

200

π2

∞
∑

n=1

(1 + (−1)n)

n2
e−n

2π2
t/4 cos nπx .

As in the case of Dirichlet boundary conditions, the exponential
terms decay rapidly with t. We have

lim
t→∞

u(x , t) =
50

3
.
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Remarks

At any given time, the average temperature in the bar is

u(t) =
1

L

∫

L

0

u(x , t) dx .

In the case of Neumann boundary conditions, one has

u(t) = a0 = f .

That is, the average temperature is constant and is equal to

the initial average temperature.

Also in this case
lim

t→∞

u(x , t) = a0

for all x . That is, at any point in the bar the temperature

tends to the initial average temperature.
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The heat equation with Robin boundary conditions

We now consider the problem

ut = c2uxx , 0 < x < L , 0 < t,

u(0, t) = 0, 0 < t, (8)

ux(L, t) = −κu(L, t), 0 < t, (9)

u(x , 0) = f (x), 0 < x < L.

In (9) we take κ > 0. This states that the bar radiates heat to
its surroundings at a rate proportional to its current
temperature.

Recall that conditions such as (9) are called Robin

conditions.
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Separation of variables

As before, the assumption that u(x , t) = X (x)T (t) leads to the
ODEs

X ′′ − kX = 0,

T ′ − c2kT = 0,

and the boundary conditions (8) and (9) imply

X (0) = 0,

X ′(L) = −κX (L).

Also as before, the possibilities for X depend on the sign of the
separation constant k.
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Case 1: k = 0

We have X ′′ = 0 and so X = Ax + B with

0 = X (0) = B ,

A = X ′(L) = −κX (L) = −κ(AL + B).

Together these give A(1 + κL) = 0. Since κ,L > 0, we have A = 0
and hence X = 0. Thus,

there are only trivial solutions in this case.
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Case 2: k = µ2 > 0

Once again we have X ′′ − µ2X = 0 and

X = c1e
µx + c2e

−µx .

The boundary conditions become

0 = c1 + c2,

µ(c1e
µL − c2e

−µL) = −κ(c1e
µL + c2e

−µL).

The first gives c2 = −c1, which when substituted in the second
yields

2µc1 cosh µL = −2κc1 sinhµL.
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Case 2: k = µ2 > 0

We may rewrite this as

c1 (µ cosh µL + κ sinhµL) = 0.

The quantity in parentheses is positive (since µ, κ and L are), so
this means we must have c1 = −c2 = 0. Hence X = 0 and

there are only trivial solutions in this case.
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Case 3: k = −µ2 < 0

From X ′′ + µ2X = 0 we find

X = c1 cos µx + c2 sinµx

and from the boundary conditions we have

0 = c1,

µ(−c1 sinµL + c2 cos µL) = −κ(c1 cos µL + c2 sinµL).

Together these imply that

c2 (µ cos µL + κ sinµL) = 0.
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Case 3: k = −µ2 < 0

Since we want nontrivial solutions (i.e. c2 6= 0), we must have

µ cos µL + κ sinµL = 0

which can be rewritten as

tanµL = −
µ

κ
.

This equation has an infinite sequence of positive solutions

0 < µ1 < µ2 < µ3 < · · ·
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Case 3: k = −µ2 < 0

The figure below shows the curves y = tanµL (in red) and
y = −µ/κ (in blue).

The µ-coordinates of their intersections (in pink) are the values µ1,
µ2, µ3, . . .
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Remarks

From the diagram we see that:

For each n

(2n − 1)π/2L < µn < nπ/L.

As n → ∞
µn → (2n − 1)π/2L.

Smaller values of κ and L tend to accelerate this convergence.
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Normal modes

As in the earlier situations, for each n ≥ 1 we have the solution

Xn = sinµnx

and the corresponding

Tn = e−λ2
nt , λn = cµn

which give the normal modes of the heat equation with boundary
conditions (8) and (9)

un(x , t) = Xn(x)Tn(t) = e−λ2
nt sinµnx .
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Superposition

Superposition of normal modes gives the general solution

u(x , t) =
∞
∑

n=1

cnun(x , t) =
∞
∑

n=1

cne
−λ2

nt sinµnx .

Imposing the initial condition u(x , 0) = f (x) gives us

f (x) =

∞
∑

n=1

cn sinµnx .

This is a generalized Fourier series for f (x). It is different from
the ordinary sine series for f (x) since

µn is not a multiple of a common value.
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Generalized Fourier coefficients

To compute the generalized Fourier coefficients cn we will use
the following fact.

Proposition

The functions

X1(x) = sinµ1x ,X2(x) = sinµ2x ,X3(x) = sinµ3x , . . .

form a complete orthogonal set on [0,L].

Complete means that all “sufficiently nice” functions can be
represented via generalized Fourier series. This is a
consequence of Sturm-Liouville theory, which we will study
later.

We can verify orthogonality directly, and will use this to
express the coefficients cn as ratios of inner products.
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Generalized Fourier coefficients

Assuming orthogonality for the moment, for any n ≥ 1 we have the
familiar computation

〈f ,Xn〉 =

〈

∞
∑

m=1

cm sinµmx , sinµnx

〉

=

∞
∑

m=1

cm〈sinµmx , sin µnx〉

= cn〈sinµnx , sinµnx〉

= cn〈Xn,Xn〉

since the inner products with m 6= n all equal zero.
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Generalized Fourier coefficients

It follows immediately that the generalized Fourier coefficients are
given by

cn =
〈f ,Xn〉

〈Xn,Xn〉
=

∫

L

0

f (x) sin µnx dx

∫

L

0

sin2 µnx dx

.

For any given f (x) these integrals can typically be computed
explicitly in terms of µn.

The values of µn, however, must typically be found via
numerical methods.
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Conclusion

Theorem

The solution to the heat equation (1) with Robin boundary

conditions (8) and (9) and initial condition (3) is given by

u(x , t) =

∞
∑

n=1

cne
−λ2

nt sinµnx ,

where µn is the nth positive solution to

tanµL =
−µ

κ
,

λn = cµn, and the coefficients cn are given by

cn =

∫

L

0
f (x) sin µnx dx

∫

L

0
sin2 µnx dx

.
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Example 2

Example

Solve the following heat conduction problem:

ut =
1

25
uxx , 0 < x < 3 , 0 < t,

u(0, t) = 0, 0 < t,

ux(3, t) = −
1

2
u(3, t), 0 < t,

u(x , 0) = 100
(

1 −
x

3

)

, 0 < x < 3.

We have c = 1/5, L = 3, κ = 1/2 and f (x) = 100(1 − x/3).
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Example 2

The integrals defining the Fourier coefficients are

100

∫ 3

0

(

1 −
x

3

)

sinµnx dx =
100(3µn − sin 3µn)

3µ2
n

and
∫ 3

0

sin2 µnx dx =
3

2
+ cos2 3µn.

Hence

cn =
200(3µn − sin 3µn)

3µ2
n (3 + 2 cos2 3µn)

.
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Example 2

We can therefore write out the full solution as

u(x , t) =
∞

∑

n=1

200(3µn − sin 3µn)

3µ2
n (3 + 2 cos2 3µn)

e−µ2
nt/25 sinµnx ,

where µn is the nth positive solution to tan 3µ = −2µ.
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Example 2

Remarks:

In order to use this solution for numerical approximation or
visualization, we must compute the values µn.

This can be done numerically in Maple, using the fsolve

command. Specifically, µn can be computed via the command

fsolve(tan(m∗L)=-m/k,m=(2∗n-1)∗Pi/(2∗L)..n∗Pi/L);

where L and k have been assigned the values of L and κ,
respectively.

These values can be computed and stored in an Array

structure, or one can define µn as a function using the ->

operator.
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Example 2

Here are approximate values for the first 5 values of µn and cn.

n µn cn

1 0.7249 47.0449
2 1.6679 45.1413
3 2.6795 21.3586
4 3.7098 19.3403
5 4.7474 12.9674

Therefore

u(x , t) = 47.0449e−0.0210t sin(0.7249x) + 45.1413e−0.1113t sin(1.6679x)

+ 21.3586e−0.2872t sin(2.6795x) + 19.3403e−0.5505t sin(3.7098x)

+ 12.9674e−0.9015t sin(4.7474x) + · · ·
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