# The one dimensional heat equation: Neumann and Robin boundary conditions 

Ryan C. Daileda



Trinity University

## Partial Differential Equations

February 28, 2012

## The heat equation with Neumann boundary conditions

Our goal is to solve:

$$
\begin{array}{ll}
u_{t}=c^{2} u_{x x}, & 0<x<L, 0<t, \\
u_{x}(0, t)=u_{x}(L, t)=0, & 0<t, \\
u(x, 0)=f(x), & 0<x<L . \tag{3}
\end{array}
$$

As before, we will use separation of variables to find a family of simple solutions to (1) and (2), and then the principle of superposition to construct a solution satisfying (3).

## Separation of variables

Assuming that $u(x, t)=X(x) T(t)$, the heat equation (1) becomes

$$
X T^{\prime}=c^{2} X^{\prime \prime} T
$$

This implies

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{c^{2} T}=k
$$

which we write as

$$
\begin{align*}
X^{\prime \prime}-k X & =0,  \tag{4}\\
T^{\prime}-c^{2} k T & =0 \tag{5}
\end{align*}
$$

The initial conditions (2) become $X^{\prime}(0) T(t)=X^{\prime}(L) T(t)=0$, or

$$
\begin{equation*}
X^{\prime}(0)=X^{\prime}(L)=0 \tag{6}
\end{equation*}
$$

## Case 1: $k=\mu^{2}>0$

The ODE (4) becomes $X^{\prime \prime}-\mu^{2} X=0$ with general solution

$$
X=c_{1} e^{\mu x}+c_{2} e^{-\mu x} .
$$

The boundary conditions (6) are

$$
\begin{aligned}
& 0=X^{\prime}(0)=\mu c_{1}-\mu c_{2}=\mu\left(c_{1}-c_{2}\right) \\
& 0=X^{\prime}(L)=\mu c_{1} e^{\mu L}-\mu c_{2} e^{-\mu L}=\mu\left(c_{1} e^{\mu L}-c_{2} e^{-\mu L}\right) .
\end{aligned}
$$

The first gives $c_{1}=c_{2}$. When we substitute this into the second we get

$$
2 c_{1} \mu \sinh \mu L=0 .
$$

Since $\mu, L>0$, we must have $c_{1}=c_{2}=0$. Hence $X=0$, i.e. there are only trivial solutions in the case $k>0$.

## Case 2: $k=0$

The ODE (4) is simply $X^{\prime \prime}=0$ so that

$$
X=A x+B
$$

The boundary conditions (6) yield

$$
0=X^{\prime}(0)=X^{\prime}(L)=A .
$$

Taking $B=1$ we get the solution

$$
X_{0}=1
$$

The corresponding equation (5) for $T$ is $T^{\prime}=0$, which yields $T=C$. We set

$$
T_{0}=1
$$

These give the zeroth normal mode:

$$
u_{0}(x, t)=X_{0}(x) T_{0}(t)=1
$$

## Case 3: $k=-\mu^{2}<0$

The ODE (4) is now $X^{\prime \prime}+\mu^{2} X=0$ with solutions

$$
X=c_{1} \cos \mu x+c_{2} \sin \mu x
$$

The boundary conditions (6) yield

$$
\begin{aligned}
& 0=X^{\prime}(0)=-\mu c_{1} \sin 0+\mu c_{2} \cos 0=\mu c_{2}, \\
& 0=X^{\prime}(L)=-\mu c_{1} \sin \mu L+\mu c_{2} \cos \mu L .
\end{aligned}
$$

The first of these gives $c_{2}=0$. In order for $X$ to be nontrivial, the second shows that we also need

$$
\sin \mu L=0
$$

## Case 3: $k=-\mu^{2}<0$

This can occur if and only if $\mu L=n \pi$, that is

$$
\mu=\mu_{n}=\frac{n \pi}{L}, n= \pm 1, \pm 2, \pm 3, \ldots
$$

Choosing $c_{1}=1$ yields the solutions

$$
X_{n}=\cos \mu_{n} x, n=1,2,3, \ldots
$$

For each $n$ the corresponding equation (5) for $T$ becomes $T^{\prime}=-\lambda_{n}^{2} T$, with $\lambda_{n}=c \mu_{n}$. Up to a constant multiple, the solution is

$$
T_{n}=e^{-\lambda_{n}^{2} t}
$$

## Normal modes and superposition

Multiplying these together gives the $n$th normal mode

$$
u_{n}(x, t)=X_{n}(x) T_{n}(t)=e^{-\lambda_{n}^{2} t} \cos \mu_{n} x, n=1,2,3, \ldots
$$

where $\mu_{n}=n \pi / L$ and $\lambda_{n}=c \mu_{n}$.
The principle of superposition now guarantees that for any choice of constants $a_{0}, a_{1}, a_{2}, \ldots$

$$
\begin{equation*}
u(x, t)=a_{0} u_{0}+\sum_{n=1}^{\infty} a_{n} u_{n}=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n}^{2} t} \cos \mu_{n} x \tag{7}
\end{equation*}
$$

is a solution of the heat equation (1) with the Neumann boundary conditions (2).

## Initial conditions

If we now require that the solution (7) satisfy the initial condition (3) we find that we need

$$
f(x)=u(x, 0)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}, 0<x<L
$$

This is simply the cosine series expansion of $f(x)$. Using our previous results, we finally find that if $f(x)$ is piecewise smooth then

$$
a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x, a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x, n \geq 1 \text {. }
$$

## Conclusion

## Theorem

If $f(x)$ is piecewise smooth, the solution to the heat equation (1) with Neumann boundary conditions (2) and initial conditions (3) is given by

$$
u(x, t)=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n}^{2} t} \cos \mu_{n} x
$$

where

$$
\mu_{n}=\frac{n \pi}{L}, \lambda_{n}=c \mu_{n},
$$

and the coefficients $a_{0}, a_{1}, a_{2}, \ldots$ are those occurring in the cosine series expansion of $f(x)$. They are given explicitly by

$$
a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x, a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x, n \geq 1 .
$$

## Example 1

## Example

Solve the following heat conduction problem:

$$
\begin{array}{ll}
u_{t}=\frac{1}{4} u_{x x}, & 0<x<1,0<t, \\
u_{x}(0, t)=u_{x}(1, t)=0, & 0<t, \\
u(x, 0)=100 x(1-x), & 0<x<1 .
\end{array}
$$

With $L=1, \mu_{n}=n \pi$ and $f(x)=100 x(1-x)$ we find

$$
\begin{gathered}
a_{0}=\int_{0}^{1} 100 x(1-x) d x=\frac{50}{3} \\
a_{n}=2 \int_{0}^{1} 100 x(1-x) \cos n \pi x d x=\frac{-200\left(1+(-1)^{n}\right)}{n^{2} \pi^{2}}, n \geq 1
\end{gathered}
$$

## Example 1

Since $c=1 / 2, \lambda_{n}=n \pi / 2$. Plugging everything into our general solution we get

$$
u(x, t)=\frac{50}{3}-\frac{200}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\left(1+(-1)^{n}\right)}{n^{2}} e^{-n^{2} \pi^{2} t / 4} \cos n \pi x
$$

As in the case of Dirichlet boundary conditions, the exponential terms decay rapidly with $t$. We have

$$
\lim _{t \rightarrow \infty} u(x, t)=\frac{50}{3} .
$$

## Remarks

- At any given time, the average temperature in the bar is

$$
\bar{u}(t)=\frac{1}{L} \int_{0}^{L} u(x, t) d x
$$

- In the case of Neumann boundary conditions, one has

$$
\bar{u}(t)=a_{0}=\bar{f}
$$

That is, the average temperature is constant and is equal to the initial average temperature.

- Also in this case

$$
\lim _{t \rightarrow \infty} u(x, t)=a_{0}
$$

for all $x$. That is, at any point in the bar the temperature tends to the initial average temperature.

## The heat equation with Robin boundary conditions

We now consider the problem

$$
\begin{array}{ll}
u_{t}=c^{2} u_{x x}, & 0<x<L, 0<t, \\
u(0, t)=0, & 0<t, \\
u_{x}(L, t)=-\kappa u(L, t), & 0<t,  \tag{9}\\
u(x, 0)=f(x), & 0<x<L .
\end{array}
$$

- In (9) we take $\kappa>0$. This states that the bar radiates heat to its surroundings at a rate proportional to its current temperature.
- Recall that conditions such as (9) are called Robin conditions.


## Separation of variables

As before, the assumption that $u(x, t)=X(x) T(t)$ leads to the ODEs

$$
\begin{aligned}
X^{\prime \prime}-k X & =0, \\
T^{\prime}-c^{2} k T & =0,
\end{aligned}
$$

and the boundary conditions (8) and (9) imply

$$
\begin{aligned}
X(0) & =0 \\
X^{\prime}(L) & =-\kappa X(L)
\end{aligned}
$$

Also as before, the possibilities for $X$ depend on the sign of the separation constant $k$.

## Case 1: $k=0$

We have $X^{\prime \prime}=0$ and so $X=A x+B$ with

$$
\begin{aligned}
0 & =X(0)=B, \\
A & =X^{\prime}(L)=-\kappa X(L)=-\kappa(A L+B) .
\end{aligned}
$$

Together these give $A(1+\kappa L)=0$. Since $\kappa, L>0$, we have $A=0$ and hence $X=0$. Thus,
there are only trivial solutions in this case.

## Case 2: $k=\mu^{2}>0$

Once again we have $X^{\prime \prime}-\mu^{2} X=0$ and

$$
X=c_{1} e^{\mu x}+c_{2} e^{-\mu x} .
$$

The boundary conditions become

$$
\begin{aligned}
0 & =c_{1}+c_{2} \\
\mu\left(c_{1} e^{\mu L}-c_{2} e^{-\mu L}\right) & =-\kappa\left(c_{1} e^{\mu L}+c_{2} e^{-\mu L}\right) .
\end{aligned}
$$

The first gives $c_{2}=-c_{1}$, which when substituted in the second yields

$$
2 \mu c_{1} \cosh \mu L=-2 \kappa c_{1} \sinh \mu L .
$$

## Case 2: $k=\mu^{2}>0$

We may rewrite this as

$$
c_{1}(\mu \cosh \mu L+\kappa \sinh \mu L)=0 .
$$

The quantity in parentheses is positive (since $\mu, \kappa$ and $L$ are), so this means we must have $c_{1}=-c_{2}=0$. Hence $X=0$ and
there are only trivial solutions in this case.

## Case 3: $k=-\mu^{2}<0$

From $X^{\prime \prime}+\mu^{2} X=0$ we find

$$
X=c_{1} \cos \mu x+c_{2} \sin \mu x
$$

and from the boundary conditions we have

$$
\begin{aligned}
0 & =c_{1} \\
\mu\left(-c_{1} \sin \mu L+c_{2} \cos \mu L\right) & =-\kappa\left(c_{1} \cos \mu L+c_{2} \sin \mu L\right) .
\end{aligned}
$$

Together these imply that

$$
c_{2}(\mu \cos \mu L+\kappa \sin \mu L)=0 .
$$

## Case 3: $k=-\mu^{2}<0$

Since we want nontrivial solutions (i.e. $c_{2} \neq 0$ ), we must have

$$
\mu \cos \mu L+\kappa \sin \mu L=0
$$

which can be rewritten as

$$
\tan \mu L=-\frac{\mu}{\kappa} .
$$

This equation has an infinite sequence of positive solutions

$$
0<\mu_{1}<\mu_{2}<\mu_{3}<\cdots
$$

## Case 3: $k=-\mu^{2}<0$

The figure below shows the curves $y=\tan \mu L$ (in red) and $y=-\mu / \kappa$ (in blue).


The $\mu$-coordinates of their intersections (in pink) are the values $\mu_{1}$, $\mu_{2}, \mu_{3}, \ldots$

## Remarks

From the diagram we see that:

- For each $n$

$$
(2 n-1) \pi / 2 L<\mu_{n}<n \pi / L .
$$

- As $n \rightarrow \infty$

$$
\mu_{n} \rightarrow(2 n-1) \pi / 2 L .
$$

- Smaller values of $\kappa$ and $L$ tend to accelerate this convergence.


## Normal modes

As in the earlier situations, for each $n \geq 1$ we have the solution

$$
X_{n}=\sin \mu_{n} x
$$

and the corresponding

$$
T_{n}=e^{-\lambda_{n}^{2} t}, \lambda_{n}=c \mu_{n}
$$

which give the normal modes of the heat equation with boundary conditions (8) and (9)

$$
u_{n}(x, t)=X_{n}(x) T_{n}(t)=e^{-\lambda_{n}^{2} t} \sin \mu_{n} x
$$

## Superposition

Superposition of normal modes gives the general solution

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} u_{n}(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\lambda_{n}^{2} t} \sin \mu_{n} x
$$

Imposing the initial condition $u(x, 0)=f(x)$ gives us

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \sin \mu_{n} x .
$$

This is a generalized Fourier series for $f(x)$. It is different from the ordinary sine series for $f(x)$ since
$\mu_{n}$ is not a multiple of a common value.

## Generalized Fourier coefficients

To compute the generalized Fourier coefficients $c_{n}$ we will use the following fact.

## Proposition

The functions

$$
X_{1}(x)=\sin \mu_{1} x, X_{2}(x)=\sin \mu_{2} x, X_{3}(x)=\sin \mu_{3} x, \ldots
$$

form a complete orthogonal set on $[0, L]$.

- Complete means that all "sufficiently nice" functions can be represented via generalized Fourier series. This is a consequence of Sturm-Liouville theory, which we will study later.
- We can verify orthogonality directly, and will use this to express the coefficients $c_{n}$ as ratios of inner products.


## Generalized Fourier coefficients

Assuming orthogonality for the moment, for any $n \geq 1$ we have the familiar computation

$$
\begin{aligned}
\left\langle f, X_{n}\right\rangle & =\left\langle\sum_{m=1}^{\infty} c_{m} \sin \mu_{m} x, \sin \mu_{n} x\right\rangle \\
& =\sum_{m=1}^{\infty} c_{m}\left\langle\sin \mu_{m} x, \sin \mu_{n} x\right\rangle \\
& =c_{n}\left\langle\sin \mu_{n} x, \sin \mu_{n} x\right\rangle \\
& =c_{n}\left\langle X_{n}, X_{n}\right\rangle
\end{aligned}
$$

since the inner products with $m \neq n$ all equal zero.

## Generalized Fourier coefficients

It follows immediately that the generalized Fourier coefficients are given by

$$
c_{n}=\frac{\left\langle f, X_{n}\right\rangle}{\left\langle X_{n}, X_{n}\right\rangle}=\frac{\int_{0}^{L} f(x) \sin \mu_{n} x d x}{\int_{0}^{L} \sin ^{2} \mu_{n} x d x}
$$

- For any given $f(x)$ these integrals can typically be computed explicitly in terms of $\mu_{n}$.
- The values of $\mu_{n}$, however, must typically be found via numerical methods.


## Conclusion

## Theorem

The solution to the heat equation (1) with Robin boundary conditions (8) and (9) and initial condition (3) is given by

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\lambda_{n}^{2} t} \sin \mu_{n} x
$$

where $\mu_{n}$ is the nth positive solution to

$$
\tan \mu L=\frac{-\mu}{\kappa},
$$

$\lambda_{n}=c \mu_{n}$, and the coefficients $c_{n}$ are given by

$$
c_{n}=\frac{\int_{0}^{L} f(x) \sin \mu_{n} x d x}{\int_{0}^{L} \sin ^{2} \mu_{n} x d x}
$$

## Example 2

## Example

Solve the following heat conduction problem:

$$
\begin{array}{ll}
u_{t}=\frac{1}{25} u_{x x}, & 0<x<3,0<t, \\
u(0, t)=0, & 0<t, \\
u_{x}(3, t)=-\frac{1}{2} u(3, t), & 0<t, \\
u(x, 0)=100\left(1-\frac{x}{3}\right), & 0<x<3 .
\end{array}
$$

We have $c=1 / 5, L=3, \kappa=1 / 2$ and $f(x)=100(1-x / 3)$.

## Example 2

The integrals defining the Fourier coefficients are

$$
100 \int_{0}^{3}\left(1-\frac{x}{3}\right) \sin \mu_{n} x d x=\frac{100\left(3 \mu_{n}-\sin 3 \mu_{n}\right)}{3 \mu_{n}^{2}}
$$

and

$$
\int_{0}^{3} \sin ^{2} \mu_{n} x d x=\frac{3}{2}+\cos ^{2} 3 \mu_{n}
$$

Hence

$$
c_{n}=\frac{200\left(3 \mu_{n}-\sin 3 \mu_{n}\right)}{3 \mu_{n}^{2}\left(3+2 \cos ^{2} 3 \mu_{n}\right)} .
$$

## Example 2

We can therefore write out the full solution as

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{200\left(3 \mu_{n}-\sin 3 \mu_{n}\right)}{3 \mu_{n}^{2}\left(3+2 \cos ^{2} 3 \mu_{n}\right)} e^{-\mu_{n}^{2} t / 25} \sin \mu_{n} x
$$

where $\mu_{n}$ is the $n$th positive solution to $\tan 3 \mu=-2 \mu$.

## Example 2

## Remarks:

- In order to use this solution for numerical approximation or visualization, we must compute the values $\mu_{n}$.
- This can be done numerically in Maple, using the fsolve command. Specifically, $\mu_{n}$ can be computed via the command fsolve $(\tan (m * L)=-m / k, m=(2 * n-1) * P i /(2 * L) . . n * P i / L)$; where $L$ and $k$ have been assigned the values of $L$ and $\kappa$, respectively.
- These values can be computed and stored in an Array structure, or one can define $\mu_{n}$ as a function using the -> operator.


## Example 2

Here are approximate values for the first 5 values of $\mu_{n}$ and $c_{n}$.

| $n$ | $\mu_{n}$ | $c_{n}$ |
| :---: | :---: | :---: |
| 1 | 0.7249 | 47.0449 |
| 2 | 1.6679 | 45.1413 |
| 3 | 2.6795 | 21.3586 |
| 4 | 3.7098 | 19.3403 |
| 5 | 4.7474 | 12.9674 |

Therefore

$$
\begin{aligned}
u(x, t) & =47.0449 e^{-0.0210 t} \sin (0.7249 x)+45.1413 e^{-0.1113 t} \sin (1.6679 x) \\
& +21.3586 e^{-0.2872 t} \sin (2.6795 x)+19.3403 e^{-0.5505 t} \sin (3.7098 x) \\
& +12.9674 e^{-0.9015 t} \sin (4.7474 x)+\cdots
\end{aligned}
$$

