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Recall:

The shape of an ideal vibrating thin elastic membrane stretched
over a circular frame of radius a can be modeled by

utt = c2∇2u, x2 + y2 < a2,

u(x , y , t) = 0, x2 + y2 = a2.

Last time, we saw that in polar coordinates this takes the form

utt = c2

(

urr +
1

r
ur +

1

r2
uθθ

)

, 0 ≤ r < a, t > 0, (1)

u(a, θ, t) = 0, 0 ≤ θ ≤ 2π, (2)

u(r , 0, t) = u(r , 2π, t),

uθ(r , 0, t) = uθ(r , 2π, t), 0 ≤ r ≤ a, t ≥ 0. (3)
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We will also impose the initial conditions

u(r , θ, 0) = f (r , θ), 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π, (4)

ut(r , θ, 0) = g(r , θ), 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π, (5)

which give the initial shape and initial velocity of the membrane,
respectively.

Our eventual goal is to completely solve this problem in the usual
manner:

First use separation of variables to find the simplest solutions
to (1) - (3);

Then use superposition to build series solutions that satisfy
(4) and (5) as well.
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Separation of Variables

Setting u(r , θ, t) = R(r)Θ(θ)T (t) leads to the separated boundary
value problems

r2R ′′ + rR ′ +
(

λ2r2
− µ2

)

R = 0, R(a) = 0,

Θ′′ + µ2Θ = 0, Θ(0) = Θ(2π),

Θ′(0) = Θ′(2π),

T ′′ + c2λ2T = 0.

We find immediately that

Θ(θ) = Θm(θ) = Am cos mθ + Bm sinmθ, µ = m = 0, 1, 2, . . . ,

and that T (t) is a linear combination of cos cλt and sin cλt.
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To determine R and λ, it remains to solve the boundary value
problem

r2R ′′ + rR ′ +
(

λ2r2
− m2

)

R = 0, (6)

R(a) = 0. (7)

The ODE (6) is the parametric form of Bessel’s equation of

order m. As we will see, it’s general solution is given by

R(r) = c1Jm(λr) + c2Ym(λr)

where Jm and Ym are the Bessel functions of order m of the

first and second kind, respectively.

In order to determine λ, c1 and c2 so that (7) holds, we need to
study these functions.
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Bessel’s equation

Given p ≥ 0, the ordinary differential equation

x2y ′′ + xy ′ + (x2
− p2)y = 0, x > 0 (8)

is known as Bessel’s equation of order p.

Solutions to (8) are known as Bessel functions.

Since (8) is a second order homogeneous linear equation, the
general solution is a linear combination of any two linearly
independent (fundamental) solutions.

Our goal is to describe and give the basic properties of the
most commonly used pair of fundamental solutions.
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Bessel functions of the first kind

The point x = 0 is a regular singular point of (8), and the method

of Frobenius can be used to produce the solution

Jp(x) =

∞
∑

k=0

(−1)k

k! Γ(k + p + 1)

(x

2

)2k+p

,

known as the Bessel function of order p of the first kind.
Here

Γ(x) =

∫

∞

0

e−ttx−1 dt (x > 0)

is the gamma function, also called the generalized factorial

function, since it satisfies

Γ(x + 1) = x Γ(x) (the functional equation),

Γ(n + 1) = n! for n ∈ N.
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Remarks

The Bessel functions of the first kind are special functions,
analogous to sine and cosine.

Many computer algebra systems include routines for
manipulation and evaluation of Bessel functions of the first
kind.

In Maple, the function Jp(x) is invoked by the command

BesselJ(p,x).

For some values of p, the Bessel functions of the first kind can
be expressed in terms of familiar functions, e.g.

J1/2(x) =

√

2

πx
sin x , J5/2(x) =

√

2

πx

[(

3

x2
− 1

)

sin x −
3

x
cos x

]

.
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Properties of Bessel functions of the first kind

Jp has infinitely many positive zeros, which we denote by

0 < αp1 < αp2 < αp3 < · · ·

Jp is oscillatory and tends to zero as x → ∞. More precisely,

Jp(x) ∼

√

2

πx
cos

(

x −
pπ

2
−

π

4

)
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Bessel functions of the second kind

The function Jp provides one solution to

x2y ′′ + xy ′ + (x2 − p2)y = 0, x > 0.

To find the general solution, we need a second linearly independent
solution.

This can be found via the method of reduction of order.

The (appropriately normalized) second solution is denoted by

Yp(x),

and is called the Bessel function of order p of the second

kind.
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As with Jp, it is possible to write down explicit series
representations of Yp. We won’t need these.

Many computer algebra systems include routines for
manipulation and evaluation of Bessel functions of the second
kind.

In Maple, the function Yp(x) is invoked by the command

BesselY(p,x).

For us, the most relevant property of Yp is

lim
x→0+

Yp(x) = −∞.
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Back to the vibrating circular membrane

Recall that the radial part R(r) of the separated solution to the
vibrating circular membrane problem must satisfy

r2R ′′ + rR ′ +
(

λ2r2
− m2

)

R = 0 (m = 0, 1, 2 . . .),

and that the general solution to this ODE is

R(r) = c1Jm(λr) + c2Ym(λr).

Because the displacement of the membrane must be finite we
require:

lim
r→0+

R(r) is finite.

Since the Bessel functions of the second kind are not finite at
zero, we conclude that c2 = 0. Hence, up to a constant

R(r) = Jm(λr).
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If we now impose the boundary condition

R(a) = 0,

we get
Jm(λa) = 0.

This means that

λa = αmn or λ = λmn =
αmn

a
,

where αmn is the nth positive zero of Jm. Hence

R(r) = Rmn(r) = Jm (λmnr)

for any m = 0, 1, 2, . . . and n = 1, 2, 3, . . .
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Remarks

The zeros αmn are not given by a simple formula, and must
typically be computed numerically.

The functions Rmn(r) are the polar analogs of

Xm(x) = sin
mπ

a
x

which arose in the rectangular case.

The numbers λmn = αmn/a are analogous to

µm =
mπ

a
.

We have (essentially) replace sine by Jm and the zeros of sine
by those of Jm.
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Normal modes of the vibrating circular membrane

If we now piece together what we’ve done so far, we find that the
normal modes of the vibrating circular membrane can be
written as

umn(r , θ, t) = Jm(λmnr) (amn cos mθ + bmn sinmθ) cos cλmnt,

u∗

mn(r , θ, t) = Jm(λmnr) (a∗mn cos mθ + b∗

mn sinmθ) sin cλmnt

for m = 0, 1, 2, . . ., n = 1, 2, 3, . . ., where λmn = αmn/a and

αmn is the nth positive zero of Jm(x).

Note that, up to scaling, rotation and a phase shift in time, these
all have the form

u(r , θ, t) = Jm(λmnr) cos mθ cos cλmnt

Daileda Circular membrane


	The wave equation on a disk
	Bessel functions
	The vibrating circular membrane

