The Circular Membrane Problem

Ryan C. Daileda

Trinity University

Partial Differential Equations March 29, 2012

Recall:

The shape of an ideal vibrating thin elastic membrane stretched over a circular frame of radius *a* can be modeled by

$$u_{tt} = c^2 \nabla^2 u,$$
 $x^2 + y^2 < a^2,$ $u(x, y, t) = 0,$ $x^2 + y^2 = a^2.$

Last time, we saw that in polar coordinates this takes the form

$$u_{tt} = c^2 \left(u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} \right), \qquad 0 \le r < a, \ t > 0,$$
 (1)

$$u(a,\theta,t)=0, 0 \leq \theta \leq 2\pi, (2)$$

$$u(r,0,t)=u(r,2\pi,t),$$

$$u_{\theta}(r,0,t) = u_{\theta}(r,2\pi,t),$$
 $0 \le r \le a, \ t \ge 0.$ (3)

We will also impose the **initial conditions**

$$u(r,\theta,0)=f(r,\theta), \qquad 0 \le r \le a, \ 0 \le \theta \le 2\pi, \qquad (4)$$

$$u_t(r,\theta,0) = g(r,\theta),$$
 $0 \le r \le a, \ 0 \le \theta \le 2\pi,$ (5)

which give the **initial shape** and **initial velocity** of the membrane, respectively.

Our eventual goal is to completely solve this problem in the usual manner:

- First use separation of variables to find the simplest solutions to (1) - (3);
- Then use superposition to build series solutions that satisfy
 (4) and (5) as well.

Separation of Variables

Setting $u(r, \theta, t) = R(r)\Theta(\theta)T(t)$ leads to the separated boundary value problems

$$r^2 R'' + rR' + (\lambda^2 r^2 - \mu^2) R = 0,$$
 $R(a) = 0,$ $\Theta'' + \mu^2 \Theta = 0,$ $\Theta(0) = \Theta(2\pi),$ $\Theta'(0) = \Theta'(2\pi),$ $T'' + c^2 \lambda^2 T = 0$

We find immediately that

$$\Theta(\theta) = \Theta_m(\theta) = A_m \cos m\theta + B_m \sin m\theta, \quad \mu = m = 0, 1, 2, \dots,$$

and that T(t) is a linear combination of $\cos c\lambda t$ and $\sin c\lambda t$.

To determine R and λ , it remains to solve the boundary value problem

$$r^2R'' + rR' + (\lambda^2r^2 - m^2)R = 0, (6)$$

$$R(a) = 0. (7)$$

The ODE (6) is the parametric form of Bessel's equation of order *m*. As we will see, it's general solution is given by

$$R(r) = c_1 J_m(\lambda r) + c_2 Y_m(\lambda r)$$

where J_m and Y_m are the Bessel functions of order m of the first and second kind, respectively.

In order to determine λ , c_1 and c_2 so that (7) holds, we need to study these functions.

Bessel's equation

Given $p \ge 0$, the ordinary differential equation

$$x^{2}y'' + xy' + (x^{2} - p^{2})y = 0, \quad x > 0$$
 (8)

is known as **Bessel's equation of order** p.

- Solutions to (8) are known as Bessel functions.
- Since (8) is a second order homogeneous linear equation, the general solution is a linear combination of any two linearly independent (fundamental) solutions.
- Our goal is to describe and give the basic properties of the most commonly used pair of fundamental solutions.

Bessel functions of the first kind

The point x = 0 is a regular singular point of (8), and the **method** of Frobenius can be used to produce the solution

$$J_p(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \, \Gamma(k+p+1)} \left(\frac{x}{2}\right)^{2k+p},$$

known as the Bessel function of order p of the first kind. Here

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt \quad (x > 0)$$

is the gamma function, also called the generalized factorial function, since it satisfies

$$\Gamma(x+1) = x \Gamma(x)$$
 (the functional equation), $\Gamma(n+1) = n!$ for $n \in \mathbb{N}$.

Remarks

- The Bessel functions of the first kind are special functions, analogous to sine and cosine.
- Many computer algebra systems include routines for manipulation and evaluation of Bessel functions of the first kind.
- In Maple, the function $J_p(x)$ is invoked by the command

BesselJ(
$$p,x$$
).

 For some values of p, the Bessel functions of the first kind can be expressed in terms of familiar functions, e.g.

$$J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x, \ \ J_{5/2}(x) = \sqrt{\frac{2}{\pi x}} \left[\left(\frac{3}{x^2} - 1 \right) \sin x - \frac{3}{x} \cos x \right].$$

Properties of Bessel functions of the first kind

 \bullet J_p has infinitely many positive zeros, which we denote by

$$0 < \alpha_{p1} < \alpha_{p2} < \alpha_{p3} < \cdots$$

• J_p is oscillatory and tends to zero as $x \to \infty$. More precisely,

$$J_p(x) \sim \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{p\pi}{2} - \frac{\pi}{4}\right)$$

Bessel functions of the second kind

The function J_p provides *one* solution to

$$x^2y'' + xy' + (x^2 - p^2)y = 0, \quad x > 0.$$

To find the general solution, we need a second linearly independent solution.

- This can be found via the method of reduction of order.
- The (appropriately normalized) second solution is denoted by

$$Y_p(x)$$
,

and is called the Bessel function of order p of the second kind.

- As with J_p , it is possible to write down explicit series representations of Y_p . We won't need these.
- Many computer algebra systems include routines for manipulation and evaluation of Bessel functions of the second kind.
- In Maple, the function $Y_p(x)$ is invoked by the command BesselY(p,x).
- ullet For us, the most relevant property of Y_p is

$$\lim_{x\to 0^+} Y_p(x) = -\infty.$$

Back to the vibrating circular membrane

Recall that the radial part R(r) of the separated solution to the vibrating circular membrane problem must satisfy

$$r^2R'' + rR' + (\lambda^2r^2 - m^2)R = 0$$
 $(m = 0, 1, 2...),$

and that the general solution to this ODE is

$$R(r) = c_1 J_m(\lambda r) + c_2 Y_m(\lambda r).$$

 Because the displacement of the membrane must be finite we require:

$$\lim_{r\to 0^+} R(r)$$
 is finite.

• Since the Bessel functions of the second kind are not finite at zero, we conclude that $c_2 = 0$. Hence, up to a constant

$$R(r) = J_m(\lambda r).$$

If we now impose the boundary condition

$$R(a)=0,$$

we get

$$J_m(\lambda a)=0.$$

This means that

$$\lambda a = \alpha_{mn}$$
 or $\lambda = \lambda_{mn} = \frac{\alpha_{mn}}{a}$,

where α_{mn} is the *n*th positive zero of J_m . Hence

$$R(r) = R_{mn}(r) = J_m(\lambda_{mn}r)$$

for any m = 0, 1, 2, ... and n = 1, 2, 3, ...

Remarks

- The zeros α_{mn} are not given by a simple formula, and must typically be computed numerically.
- The functions $R_{mn}(r)$ are the polar analogs of

$$X_m(x) = \sin \frac{m\pi}{a} x$$

which arose in the rectangular case.

• The numbers $\lambda_{mn} = \alpha_{mn}/a$ are analogous to

$$\mu_{m}=\frac{m\pi}{a}.$$

• We have (essentially) replace sine by J_m and the zeros of sine by those of J_m .

Normal modes of the vibrating circular membrane

If we now piece together what we've done so far, we find that the **normal modes of the vibrating circular membrane** can be written as

$$u_{mn}(r,\theta,t) = J_m(\lambda_{mn}r) \left(a_{mn} \cos m\theta + b_{mn} \sin m\theta \right) \cos c\lambda_{mn}t,$$
 $u_{mn}^*(r,\theta,t) = J_m(\lambda_{mn}r) \left(a_{mn}^* \cos m\theta + b_{mn}^* \sin m\theta \right) \sin c\lambda_{mn}t$ for $m=0,1,2,\ldots,\ n=1,2,3,\ldots$, where $\lambda_{mn}=\alpha_{mn}/a$ and α_{mn} is the n th positive zero of $J_m(x)$.

Note that, up to scaling, rotation and a phase shift in time, these all have the form

$$u(r, \theta, t) = J_m(\lambda_{mn}r) \cos m\theta \cos c\lambda_{mn}t$$

