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Recall:

A Sturm-Liouville (S-L) problem consists of

A Sturm-Liouville equation on an interval:

(p(x)y ′)′ + (q(x) + λr(x))y = 0, a < x < b,

together with

Boundary conditions, i.e. specified behavior of y at x = a
and x = b.

Such a problem is called regular if:

The boundary conditions are of the form

c1y(a) + c2y
′(a) = 0,

d1y(b) + d2y
′(b) = 0,

where (c1, c2), (d1, d2) 6= (0, 0);

p, q and r satisfy certain regularity conditions on [a, b].
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A nonzero function y that solves an S-L problem is called an
eigenfunction, and the corresponding value of λ is called an
eigenvalue.
Eigenvalues and eigenfunctions of (regular) S-L problems have very
nice properties.

Theorem

The eigenvalues of a regular S-L problem form an increasing
sequence of real numbers

λ1 < λ2 < λ3 < · · ·

with
lim

n→∞

λn = ∞.

Moreover, the eigenfunction yn corresponding to λn is unique (up
to a scalar multiple), and has exactly n − 1 zeros in the interval
a < x < b.
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Theorem

Suppose that yj and yk are eigenfunctions corresponding to
distinct eigenvalues λj and λk of a (regular) S-L problem. Then yj

and yk are orthogonal on [a, b] with respect to the weight function
w(x) = r(x). That is

〈yj , yk〉 =

∫ b

a

yj(x)yk(x)r(x) dx = 0.

We have put the word “regular” in parentheses because this
result actually holds for certain non-regular S-L problems, too.

We will look at the proof of this result to see just where
“regularity” is needed.
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Proof of orthogonality

If (yj , λj), (yk , λk) are eigenfunction/eigenvalue pairs then

(py ′

j )
′ + (q + λj r)yj = 0,

(py ′

k)′ + (q + λk r)yk = 0.

Multiply the first by yk and the second by yj , then subtract to get

(py ′

j )
′yk − (py ′

k)′yj + (λj − λk)yjyk r = 0.

Moving the λ-terms to one side and “adding zero,” we get

(λj − λk)yjyk r = (py ′

k)′yj − (py ′

j )
′yk

= (py ′

k)′yj + py ′

ky ′

j − py ′

j y
′

k − (py ′

j )
′yk

= (py ′

kyj − py ′

j yk)′

=
(
p(y ′

kyj − y ′

j yk)
)
′

.
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If λj 6= λk , we can divide by λj − λk and then integrate to get

〈yj , yk〉 =

∫ b

a

yj(x)yk(x)r(x) dx =
p(x)

(

y ′

k(x)yj (x) − y ′

j (x)yk(x)
)

λj − λk

∣
∣
∣
∣

b

a

.

This proves the orthogonality of yj and yk whenever the RHS
equals zero. This is guaranteed to happen if

p(a)
(
y ′

k(a)yj(a) − y ′

j (a)yk(a)
)

= p(b)
(
y ′

k(b)yj(b) − y ′

j (b)yk(b)
)

= 0.

These equalities occur when:

y ′

k(a)yj(a) − y ′

j (a)yk(a) = 0
︸ ︷︷ ︸

A

or p(a) = 0
︸ ︷︷ ︸

A′

;

y ′

k(b)yj(b) − y ′

j (b)yk(b) = 0
︸ ︷︷ ︸

B

or p(b) = 0
︸ ︷︷ ︸

B′

.

While these conditions are sufficient for orthogonality, it should be
pointed out that they are not necessary.
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Orthogonality for regular S-L problems

If our S-L problem is regular then at x = a we have

c1yj(a) + c2y
′

j (a) = 0,

c1yk(a) + c2y
′

k(a) = 0,

or in matrix form
(

yj(a) y ′

j (a)

yk(a) y ′

k(a)

)(
c1

c2

)

=

(
0
0

)

.

Since (c1, c2) 6= (0, 0) the determinant must be zero, that is

yj(a)y
′

k(a) − yk(a)y ′

j (a) = 0,

which is condition A. Likewise, the boundary condition at x = b
gives condition B , which verifies orthogonality.
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Examples

Example

Use the preceding results to verify orthogonality of the
eigenfunctions of

y ′′ + λy = 0, 0 < x < L,

y(0) = y(L) = 0.

This is a regular S-L problem with eigenfunctions

yn = sin(nπx/L).

Since r(x) = 1, we immediately deduce that

∫ L

0
sin

(mπx

L

)

sin
(nπx

L

)

dx = 0

for m 6= n.
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Example

If m ≥ 0, use the preceding results to verify orthogonality of the
eigenfunctions of

x2y ′′ + xy ′ + (λ2x2 − m2)y = 0, 0 < x < a,

y(0) is finite, y(a) = 0.

This is a singular S-L problem with eigenfunctions

yn = Jm(αmnx/a).

Since p(x) = x , p(0) = 0. This gives condition A′. Since the
boundary condition y(a) = 0 is regular, we get also get condition
B . With r(x) = x , we immediately deduce that

∫ a

0
Jm

(αmk

a
x
)

Jm

(αmℓ

a
x
)

x dx = 0

for k 6= ℓ.
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Example

Use the preceding results to verify orthogonality of the
eigenfunctions of

y ′′ + λy = 0, −p < x < p,

y(−p) = y(p),

y ′(−p) = y ′(p).

This is an S-L problem with 2p-periodic boundary conditions. It
is left as an exercise to verify that the eigenvalues are

λn =
n2π2

p2

for n = 0, 1, 2, 3, . . . with eigenfunctions

yn = cos
nπx

p
or sin

nπx

p
.
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Although A, A′, B and B ′ may not hold, the periodic boundary
conditions imply that

(
y ′

k(p)yj(p) − y ′

j (p)yk(p)
)
−

(
y ′

k(−p)yj(−p) − y ′

j (−p)yk(−p)
)

= 0.

Since r(x) = 1, this immediately implies the orthogonality
relations

∫ p

−p

sin
mπx

p
sin

nπx

p
dx = 0,

∫ p

−p

cos
mπx

p
cos

nπx

p
dx = 0,

∫ p

−p

sin
mπx

p
cos

nπx

p
dx = 0,

for m 6= n.
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“Fourier convergence” for S-L problems

The eigenfunctions of an S-L problem provide a family of
orthogonal functions. As with sine and cosine, we can use these to
give series expansions for “sufficiently nice” functions.

Theorem

Let y1, y2, y3, . . . be the eigenfunctions of a regular S-L problem
on [a, b]. If f is piecewise smooth on [a, b], then

f (x+) + f (x−)

2
=

∞∑

n=1

Anyn(x),

where

An =
〈f , yn〉
〈yn, yn〉

=

∫ b

a

f (x)yn(x)r(x) dx

∫ b

a

y2
n (x)r(x) dx

.
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Remarks

The series
∑

∞

n=1 Anyn is called the eigenfunction expansion
of f .

Recall that f (x) = f (x+)+f (x−)
2 anywhere f is continuous. So

the eigenfunction expansion is equal to f at most points.

Although we have only stated this result for regular S-L
problems, it frequently holds for singular problems as well.

The “original” Fourier convergence theorem provides an
example of this phenomenon (the S-L problem involved in this
case is non-regular).
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The hanging chain

Consider a chain (or heavy rope, cable, etc.) of length L hanging
from a fixed point, subject to only to downward gravitational force.

x

u
Chain at rest Displaced chain

x = L

We place the chain along the (vertical) x-axis, displace the chain
from rest, and let

u(x , t) =
Horizontal deflection of chain from equilibrium
at height x and time t.
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Under ideal assumptions (e.g. planar motion, small deflection, no
energy loss due to friction or air resistance, etc.) we obtain the
boundary value problem

utt = g (xuxx + ux) , 0 < x < L, t > 0,

u(L, t) = 0, t > 0,

u(x , 0) = f (x),

ut(x , 0) = v(x),

where

f (x) is the initial shape of the chain,

v(x) is the initial (horizontal) velocity of the chain,

g is the acceleration due to gravity.
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Writing u(x , t) = X (x)T (t), separation of variables (and physical
considerations) yields

T ′′ + λ2gT = 0, t > 0,

xX ′′ + X ′ + λ2X = 0, 0 < x < L,

X (0) finite, X (L) = 0.

The general solution for T is

T (t) = A cos (
√

gλt) + B sin (
√

gλt) .

The ODE for X can be rewritten as

(xX ′)′ + λ2X = 0,

yielding a singular S-L problem (with p(x) = x , q(x) = 0,
r(x) = 1, and parameter λ2).
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To find the eigenfunctions, we substitute s = 2
√

x . This yields the
parametric Bessel equation of order 0:

s2 d2X

ds2
+ s

dX

ds
+ λ2s2X = 0, 0 < s < 2

√
L,

X (0) finite, X (2
√

L) = 0.

As we have seen, this means

λ = λn =
αn

2
√

L

X (s) = Xn(s) = J0

(
αns

2
√

L

)

,

where αn is the nth positive zero of J0. Back-substitution then
gives

X (x) = Xn(x) = J0

(

αn

√
x

L

)

.
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From this we find that

T (t) = Tn(t) = An cos (
√

gλnt) + Bn sin (
√

gλnt)

= An cos

(√
g

L

αnt

2

)

+ Bn sin

(√
g

L

αnt

2

)

,

and superposition gives the general solution

u(x , t) =
∞∑

n=1

Xn(x)Tn(t)

=

∞∑

n=1

J0

(

αn

√
x

L

)(

An cos

(√
g

L

αnt

2

)

+ Bn sin

(√
g

L

αnt

2

))

.
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The initial shape condition requires that

f (x) = u(x , 0) =

∞∑

n=1

An J0

(

αn

√
x

L

)

︸ ︷︷ ︸

Xn(x)

.

According to S-L theory, this means that

An =
〈f ,Xn〉
〈Xn,Xn〉

=

∫ L

0
f (x)J0

(

αn

√
x

L

)

dx

∫ L

0
J2
0

(

αn

√
x

L

)

dx

=
1

L J2
1 (αn)

∫ L

0
f (x)J0

(

αn

√
x

L

)

dx .

Setting ut(x , 0) = v(x) and using similar reasoning yields

Bn =
2

αnJ2
1 (αn)

√
gL

∫ L

0
v(x)J0

(

αn

√
x

L

)

dx .
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