More on the Circular Membrane Problem

Ryan C. Daileda

Trinity University

Partial Differential Equations April 3, 2012

- 4 回 2 - 4 □ 2 - 4 □

御 と く ヨ と く ヨ と …

Recall:

The vibrations in a thin circular membrane of radius *a* can be modeled by the boundary value problem

$$u_{tt} = c^2 \left(u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta}
ight), \quad 0 < r < a, t > 0,$$
 (1)

$$u(a, \theta, t) = 0,$$
 $0 \le \theta \le 2\pi, t > 0$ (2)

$$\begin{aligned} & u(r,0,t) = u(r,2\pi,t), \\ & u_{\theta}(r,0,t) = u_{\theta}(r,2\pi,t), \end{aligned} \qquad \qquad 0 < r < a, \ t > 0. \end{aligned}$$

Here we have centered the membrane at the origin in the *xy*-plane, (r, θ) are polar coordinates, and

 $u(r, \theta, t) = {
m deflection of membrane from equilibrium at
ho
ho position (r, \theta) and time t.}$

Normal modes of the vibrating circular membrane

Using separation of variables we found the normal modes

$$u_{mn}(r,\theta,t) = J_m(\lambda_{mn}r)(a_{mn}\cos m\theta + b_{mn}\sin m\theta)\cos c\lambda_{mn}t,$$

$$u_{mn}^{*}(r, \theta, t) = J_m(\lambda_{mn}r)(a_{mn}^{*}\cos m\theta + b_{mn}^{*}\sin m\theta)\sin c\lambda_{mn}t$$

for m = 0, 1, 2, ..., n = 1, 2, 3, ..., where

• J_m is the **Bessel function of order** m of the first kind,

•
$$\lambda_{mn} = \alpha_{mn}/a$$
, and

• α_{mn} is the *n*th positive zero of J_m .

We'll briefly review what we know about Bessel functions of the first kind.

(本部) (문) (문) (문

Bessel functions of the first kind

Given $p \ge 0$, $J_p(x)$ is a particular solution to the **Bessel equation** of order p

$$x^2y'' + xy' + (x^2 - p^2)y = 0, \ x > 0.$$

Relevant properties include:

• J_p has infinitely many positive zeros, which we denote by

$$0 < \alpha_{p1} < \alpha_{p2} < \alpha_{p3} < \cdots$$

- $J_0(0) = 1$ and $J_p(0) = 0$ for p > 0.
- J_p is oscillatory and tends to zero as $x \to \infty$. More precisely,

$$J_p(x) \sim \sqrt{rac{2}{\pi x}} \cos\left(x - rac{p\pi}{2} - rac{\pi}{4}
ight).$$

Picture:

- The values of J_p always lie between 1 and -1.
- The distance between successive zeros α_{pn} and $\alpha_{p,n+1}$ of J_p approaches π as $n \to \infty$.
- For $0 , the graph of <math>J_p$ has a vertical tangent line at x = 0.
- For 1 < p, the graph of J_p has a horizontal tangent line at x = 0, and the graph is initially "flat."

The general solution to the vibrating circular membrane problem

Superposition of the normal modes gives the **general solution** to (1) - (3)

$$u(r,\theta,t) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_m(\lambda_{mn}r) (a_{mn} \cos m\theta + b_{mn} \sin m\theta) \cos c\lambda_{mn}t + \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_m(\lambda_{mn}r) (a_{mn}^* \cos m\theta + b_{mn}^* \sin m\theta) \sin c\lambda_{mn}t.$$

We now need to determine the values of the coefficients a_{mn} , b_{mn} , a_{mn}^* and b_{mn}^* so that the solution satisfies the **initial conditions**

$$u(r, \theta, 0) = f(r, \theta),$$
 (the initial shape),
 $u_t(r, \theta, 0) = g(r, \theta),$ (the initial velocity).

《글》 《글》

Setting t = 0 in the general solution we find that these conditions require us to satisfy

$$f(r,\theta) = u(r,\theta,0) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_m(\lambda_{mn}r) (a_{mn} \cos m\theta + b_{mn} \sin m\theta)$$
$$g(r,\theta) = u_t(r,\theta,0) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} c\lambda_{mn} J_m(\lambda_{mn}r) (a_{mn}^* \cos m\theta + b_{mn}^* \sin m\theta)$$

We find that:

- The coefficients a_{mn} and b_{mn} only have to do with the initial shape, and a_{mn}^* and b_{mn}^* only have to do with the initial velocity.
- The relationship between a_{mn} , b_{mn} and $f(r, \theta)$ is (up to a factor of $c\lambda_{mn}$) the same as the relationship between a_{mn}^* , b_{mn}^* and $g(r, \theta)$.

Fourier-Bessel expansions

The initial shape equation

$$f(r,\theta) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_m(\lambda_{mn}r) (a_{mn} \cos m\theta + b_{mn} \sin m\theta)$$

is called the **Fourier-Bessel expansion** of f. It requires us to write $f(r, \theta)$ as a linear combination of the functions

$$\phi_{mn}(r, \theta) = J_m(\lambda_{mn}r) \cos m\theta$$
 and $\psi_{mn}(r, \theta) = J_m(\lambda_{mn}r) \sin m\theta$

for $m = 0, 1, 2, \ldots, n = 1, 2, 3 \ldots$

As usual, we can use **orthogonality** to express the coefficients in this combination as ratios of inner products (integrals).

.≣...>

Orthogonality

Theore<u>m</u>

The functions

$$\phi_{mn}(r,\theta) = J_m(\lambda_{mn}r) \cos m\theta$$
 and $\psi_{mn}(r,\theta) = J_m(\lambda_{mn}r) \sin m\theta$

(m = 0, 1, 2, ..., n = 1, 2, 3...) form a complete orthogonal set of functions relative to the inner product

$$\langle f,g\rangle = \int_0^{2\pi} \int_0^a f(r,\theta)g(r,\theta)r\,dr\,d\theta.$$

That is,

$$\begin{split} \langle \phi_{mn}, \phi_{jk} \rangle &= \langle \psi_{mn}, \psi_{jk} \rangle = 0 & \quad \text{for } (m, n) \neq (j, k), \\ \langle \phi_{mn}, \psi_{jk} \rangle &= 0 & \quad \text{for all } (m, n) \text{ and } (j, k). \end{split}$$

(신문) 신문)

Proving orthogonality

We will prove the orthogonality of the functions

$$\phi_{mn}(r,\theta) = J(\lambda_{mn}r)\cos m\theta.$$

The other cases will be left as exercises. If $(m, n) \neq (j, k)$, we have

$$\begin{split} \langle \phi_{mn}, \phi_{jk} \rangle &= \int_0^{2\pi} \int_0^a J_m(\lambda_{mn}r) \cos(m\theta) J_j(\lambda_{jk}r) \cos(j\theta) r \, dr \, d\theta \\ &= \int_0^{2\pi} \cos(m\theta) \cos(j\theta) \, d\theta \, \int_0^a J_m(\lambda_{mn}r) J_j(\lambda_{jk}r) \, r \, dr. \end{split}$$

By orthogonality of the functions $\{\cos m\theta\}$ on $[0, 2\pi]$, the first integral is **zero** if $m \neq j$. What if m = j?

< 注→ < 注→ -

If m = j then the first integral is **not** zero. So to establish orthogonality in this case we must show that

$$\int_0^a J_m(\lambda_{mn}r) J_m(\lambda_{mk}r) r \, dr = 0 \quad \text{if } n \neq k.$$

 This says that the functions J_m(λ_{mn}r), m = 0, 1, 2..., are orthogonal on the interval [0, a] relative to the inner product

$$\langle f,g\rangle = \int_0^a f(r)g(r)r\,dr.$$

- Note the presence of the function w(r) = r in this inner product. It is called a weight function.
- Inner products with weight functions figure prominently in **Sturm-Liouville theory**.

回 と く ヨ と く ヨ と

Orthogonality of Bessel functions

The function $y = J_m(\lambda r)$ satisfies the ODE

$$r^{2}y'' + ry' + (\lambda^{2}r^{2} - m^{2})y = 0.$$

This is equivalent to:

$$r(ry')' = -(\lambda^2 r^2 - m^2)y.$$

Taking $y_n = J_m(\lambda_{mn}r)$ and $y_k = J_m(\lambda_{mk}r)$ (for convenience) gives

$$r(ry'_{n})' = -(\lambda_{mn}^{2}r^{2} - m^{2})y_{n}$$

$$r(ry'_{k})' = -(\lambda_{mk}^{2}r^{2} - m^{2})y_{k}.$$

Multiply the first by y_k , the second by y_n , and subtract to get

$$(\lambda_{mk}^2 - \lambda_{mn}^2)y_ny_kr^2 = ry_k(ry'_n)' - ry_n(ry'_k)'.$$

(E) < E)</p>

3

Now divide by r:

$$\begin{aligned} (\lambda_{mk}^2 - \lambda_{mn}^2) y_n y_k r &= y_k (ry'_n)' - y_n (ry'_k)' \\ &= y_k (ry'_n)' + y'_k ry'_n - y'_n ry'_k - y_n (ry'_k)' \\ &= (y_k ry'_n - y_n ry'_k)'. \end{aligned}$$

Now integrate both sides:

$$(\lambda_{mk}^{2} - \lambda_{mn}^{2}) \int_{0}^{a} y_{n} y_{k} r \, dr = y_{k} r y_{n}' - y_{n} r y_{k}' \Big|_{0}^{a}.$$
(4)

Finally, we have

$$y_n(a) = J_m(\lambda_{mn}a) = J_m\left(\frac{\alpha_{mn}}{a}a\right) = J_m(\alpha_{mn}) = 0$$

and likewise $y_k(a) = 0$. So, the right hand side of (4) equals zero.

< 注 → < 注 → .

Since $\lambda_{mk} \neq \lambda_{mn}$ for $k \neq n$, it must be the case that

$$0=\int_0^a y_n y_k r\,dr=\int_0^a J_m(\lambda_{mn}r)J_m(\lambda_{mk}r)r\,dr$$

which is what we needed to show.

• In the case of the inner product of $J_m(\lambda_{mn}r)$ with itself, we have the complementary relation

$$\int_0^a J_m^2(\lambda_{mn}r)r\,dr = \frac{a^2}{2}J_{m+1}^2(\alpha_{mn})$$

for $n = 1, 2, 3, \ldots$ The proof is outlined in exercise 4.8.36.

 Although we have assumed that the order *m* is an integer, these relations hold for arbitrary *m* ≥ 0.

Initial conditions revisited

Recall that the general solution to the vibrating circular membrane problem (1) - (3) is

$$u(r,\theta,t) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_m(\lambda_{mn}r) (a_{mn} \cos m\theta + b_{mn} \sin m\theta) \cos c\lambda_{mn}t + \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_m(\lambda_{mn}r) (a_{mn}^* \cos m\theta + b_{mn}^* \sin m\theta) \sin c\lambda_{mn}t.$$

and that the coefficients a_{mn} and b_{mn} are given by the Fourier-Bessel expansion of the initial shape $f(r, \theta)$:

$$f(r,\theta) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_m(\lambda_{mn}r) (a_{mn} \cos m\theta + b_{mn} \sin m\theta).$$

As previously noted, the orthogonality relations allow us express the Fourier-Bessel coefficients as ratios of inner products.

回 と く ヨ と く ヨ と

Determining a_{mn} and b_{mn}

If $f(r, \theta)$ is "sufficiently nice," then we have

$$a_{mn} = \frac{\langle f, \phi_{mn} \rangle}{\langle \phi_{mn}, \phi_{mn} \rangle} = \frac{\int_{0}^{2\pi} \int_{0}^{a} f(r, \theta) J_{m}(\lambda_{mn}r) \cos(m\theta) r \, dr \, d\theta}{\int_{0}^{2\pi} \int_{0}^{a} J_{m}^{2}(\lambda_{mn}r) \cos^{2}(m\theta) r \, dr \, d\theta}$$

for $m \ge 0$, $n \ge 1$. Using the complementary orthogonality relation, the integral in the denominator is equal to

$$\int_{0}^{2\pi} \cos^{2}(m\theta) \, d\theta \, \int_{0}^{a} J_{m}^{2}(\lambda_{mn}r) \, r \, dr = \begin{cases} \pi a^{2} J_{1}^{2}(\alpha_{0n}) & \text{if } m = 0, \\ \\ \frac{\pi a^{2}}{2} J_{m+1}^{2}(\alpha_{mn}) & \text{if } m \ge 1. \end{cases}$$

We finally find that

$$a_{0n} = \frac{1}{\pi a^2 J_1^2(\alpha_{0n})} \int_0^{2\pi} \int_0^a f(r,\theta) J_0(\lambda_{0n}r) r \, dr \, d\theta,$$

$$a_{mn} = \frac{2}{\pi a^2 J_{m+1}^2(\alpha_{mn})} \int_0^{2\pi} \int_0^a f(r,\theta) J_m(\lambda_{mn}r) \cos(m\theta) r \, dr \, d\theta,$$

and likewise

$$b_{mn} = \frac{2}{\pi a^2 J_{m+1}^2(\alpha_{mn})} \int_0^{2\pi} \int_0^a f(r,\theta) J_m(\lambda_{mn}r) \sin(m\theta) r \, dr \, d\theta,$$

for $m, n = 1, 2, 3, \ldots$

・ロト ・回ト ・ヨト ・ヨト

æ

Formulas for a_{mn}^* and b_{mn}^*

Referring back to the Fourier-Bessel expansion of g(x, y) and using the same line of reasoning leads to the analogous formulae

$$a_{0n}^{*} = \frac{1}{\pi c \alpha_{0n} a J_{1}^{2}(\alpha_{0n})} \int_{0}^{2\pi} \int_{0}^{a} g(r,\theta) J_{0}(\lambda_{0n}r) r \, dr \, d\theta,$$

$$a_{mn}^{*} = \frac{2}{\pi c \alpha_{mn} a J_{m+1}^{2}(\alpha_{mn})} \int_{0}^{2\pi} \int_{0}^{a} g(r,\theta) J_{m}(\lambda_{mn}r) \cos(m\theta) r \, dr \, d\theta,$$

$$b_{mn}^{*} = \frac{2}{\pi c \alpha_{mn} a J_{m+1}^{2}(\alpha_{mn})} \int_{0}^{2\pi} \int_{0}^{a} g(r,\theta) J_{m}(\lambda_{mn}r) \sin(m\theta) r \, dr \, d\theta,$$

for $m, n = 1, 2, 3, \ldots$