More on the Circular Membrane Problem

Ryan C. Daileda

Trinity University

Partial Differential Equations
 April 3, 2012

Recall:

The vibrations in a thin circular membrane of radius a can be modeled by the boundary value problem

$$
\begin{array}{ll}
u_{t t}=c^{2}\left(u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}\right), & 0<r<a, t>0, \\
u(a, \theta, t)=0, & 0 \leq \theta \leq 2 \pi, t>0 \\
u(r, 0, t)=u(r, 2 \pi, t), & 0<r<a, t>0 .
\end{array}
$$

Here we have centered the membrane at the origin in the $x y$-plane, (r, θ) are polar coordinates, and

$$
u(r, \theta, t)=\begin{aligned}
& \text { deflection of membrane from equilibrium at } \\
& \text { position }(r, \theta) \text { and time } t .
\end{aligned}
$$

Normal modes of the vibrating circular membrane

Using separation of variables we found the normal modes

$$
\begin{aligned}
& u_{m n}(r, \theta, t)=J_{m}\left(\lambda_{m n} r\right)\left(a_{m n} \cos m \theta+b_{m n} \sin m \theta\right) \cos c \lambda_{m n} t, \\
& u_{m n}^{*}(r, \theta, t)=J_{m}\left(\lambda_{m n} r\right)\left(a_{m n}^{*} \cos m \theta+b_{m n}^{*} \sin m \theta\right) \sin c \lambda_{m n} t
\end{aligned}
$$

for $m=0,1,2, \ldots, n=1,2,3, \ldots$, where

- J_{m} is the Bessel function of order m of the first kind,
- $\lambda_{m n}=\alpha_{m n} / a$, and
- $\alpha_{m n}$ is the nth positive zero of J_{m}.

We'll briefly review what we know about Bessel functions of the first kind.

Bessel functions of the first kind

Given $p \geq 0, J_{p}(x)$ is a particular solution to the Bessel equation of order p

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0, x>0
$$

Relevant properties include:

- J_{p} has infinitely many positive zeros, which we denote by

$$
0<\alpha_{p 1}<\alpha_{p 2}<\alpha_{p 3}<\cdots
$$

- $J_{0}(0)=1$ and $J_{p}(0)=0$ for $p>0$.
- J_{p} is oscillatory and tends to zero as $x \rightarrow \infty$. More precisely,

$$
J_{p}(x) \sim \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{p \pi}{2}-\frac{\pi}{4}\right)
$$

Picture:

- The values of J_{p} always lie between 1 and -1 .
- The distance between successive zeros $\alpha_{p n}$ and $\alpha_{p, n+1}$ of J_{p} approaches π as $n \rightarrow \infty$.
- For $0<p<1$, the graph of J_{p} has a vertical tangent line at $x=0$.
- For $1<p$, the graph of J_{p} has a horizontal tangent line at $x=0$, and the graph is initially "flat."

The general solution to the vibrating circular membrane problem

Superposition of the normal modes gives the general solution to (1) - (3)

$$
\begin{aligned}
u(r, \theta, t)= & \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\lambda_{m n} r\right)\left(a_{m n} \cos m \theta+b_{m n} \sin m \theta\right) \cos c \lambda_{m n} t \\
& +\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\lambda_{m n} r\right)\left(a_{m n}^{*} \cos m \theta+b_{m n}^{*} \sin m \theta\right) \sin c \lambda_{m n} t
\end{aligned}
$$

We now need to determine the values of the coefficients $a_{m n}, b_{m n}$, $a_{m n}^{*}$ and $b_{m n}^{*}$ so that the solution satisfies the initial conditions

$$
\begin{aligned}
& u(r, \theta, 0)=f(r, \theta) \\
& u_{t}(r, \theta, 0)=g(r, \theta),
\end{aligned}
$$

(the initial shape),
(the initial velocity).

Setting $t=0$ in the general solution we find that these conditions require us to satisfy

$$
\begin{aligned}
& f(r, \theta)=u(r, \theta, 0)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\lambda_{m n} r\right)\left(a_{m n} \cos m \theta+b_{m n} \sin m \theta\right) \\
& g(r, \theta)=u_{t}(r, \theta, 0)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} c \lambda_{m n} J_{m}\left(\lambda_{m n} r\right)\left(a_{m n}^{*} \cos m \theta+b_{m n}^{*} \sin m \theta\right)
\end{aligned}
$$

We find that:

- The coefficients $a_{m n}$ and $b_{m n}$ only have to do with the initial shape, and $a_{m n}^{*}$ and $b_{m n}^{*}$ only have to do with the initial velocity.
- The relationship between $a_{m n}, b_{m n}$ and $f(r, \theta)$ is (up to a factor of $c \lambda_{m n}$) the same as the relationship between $a_{m n}^{*}$, $b_{m n}^{*}$ and $g(r, \theta)$.

Fourier-Bessel expansions

The initial shape equation

$$
f(r, \theta)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\lambda_{m n} r\right)\left(a_{m n} \cos m \theta+b_{m n} \sin m \theta\right)
$$

is called the Fourier-Bessel expansion of f. It requires us to write $f(r, \theta)$ as a linear combination of the functions

$$
\phi_{m n}(r, \theta)=J_{m}\left(\lambda_{m n} r\right) \cos m \theta \text { and } \psi_{m n}(r, \theta)=J_{m}\left(\lambda_{m n} r\right) \sin m \theta
$$

for $m=0,1,2, \ldots, n=1,2,3 \ldots$
As usual, we can use orthogonality to express the coefficients in this combination as ratios of inner products (integrals).

Orthogonality

Theorem

The functions

$$
\phi_{m n}(r, \theta)=J_{m}\left(\lambda_{m n} r\right) \cos m \theta \text { and } \psi_{m n}(r, \theta)=J_{m}\left(\lambda_{m n} r\right) \sin m \theta
$$

($m=0,1,2, \ldots, n=1,2,3 \ldots$) form a complete orthogonal set of functions relative to the inner product

$$
\langle f, g\rangle=\int_{0}^{2 \pi} \int_{0}^{a} f(r, \theta) g(r, \theta) r d r d \theta
$$

That is,

$$
\begin{array}{lr}
\left\langle\phi_{m n}, \phi_{j k}\right\rangle=\left\langle\psi_{m n}, \psi_{j k}\right\rangle=0 & \text { for }(m, n) \neq(j, k), \\
\left\langle\phi_{m n}, \psi_{j k}\right\rangle=0 & \text { for all }(m, n) \text { and }(j, k) .
\end{array}
$$

Proving orthogonality

We will prove the orthogonality of the functions

$$
\phi_{m n}(r, \theta)=J\left(\lambda_{m n} r\right) \cos m \theta .
$$

The other cases will be left as exercises. If $(m, n) \neq(j, k)$, we have

$$
\begin{aligned}
\left\langle\phi_{m n}, \phi_{j k}\right\rangle & =\int_{0}^{2 \pi} \int_{0}^{a} J_{m}\left(\lambda_{m n} r\right) \cos (m \theta) J_{j}\left(\lambda_{j k} r\right) \cos (j \theta) r d r d \theta \\
& =\int_{0}^{2 \pi} \cos (m \theta) \cos (j \theta) d \theta \int_{0}^{a} J_{m}\left(\lambda_{m n} r\right) J_{j}\left(\lambda_{j k} r\right) r d r
\end{aligned}
$$

By orthogonality of the functions $\{\cos m \theta\}$ on $[0,2 \pi]$, the first integral is zero if $m \neq j$. What if $m=j$?

If $m=j$ then the first integral is not zero. So to establish orthogonality in this case we must show that

$$
\int_{0}^{a} J_{m}\left(\lambda_{m n} r\right) J_{m}\left(\lambda_{m k} r\right) r d r=0 \quad \text { if } n \neq k
$$

- This says that the functions $J_{m}\left(\lambda_{m n} r\right), m=0,1,2 \ldots$, are orthogonal on the interval $[0, a]$ relative to the inner product

$$
\langle f, g\rangle=\int_{0}^{a} f(r) g(r) r d r
$$

- Note the presence of the function $w(r)=r$ in this inner product. It is called a weight function.
- Inner products with weight functions figure prominently in Sturm-Liouville theory.

Orthogonality of Bessel functions

The function $y=J_{m}(\lambda r)$ satisfies the ODE

$$
r^{2} y^{\prime \prime}+r y^{\prime}+\left(\lambda^{2} r^{2}-m^{2}\right) y=0
$$

This is equivalent to:

$$
r\left(r y^{\prime}\right)^{\prime}=-\left(\lambda^{2} r^{2}-m^{2}\right) y .
$$

Taking $y_{n}=J_{m}\left(\lambda_{m n} r\right)$ and $y_{k}=J_{m}\left(\lambda_{m k} r\right)$ (for convenience) gives

$$
\begin{aligned}
& r\left(r y_{n}^{\prime}\right)^{\prime}=-\left(\lambda_{m n}^{2} r^{2}-m^{2}\right) y_{n} \\
& r\left(r y_{k}^{\prime}\right)^{\prime}=-\left(\lambda_{m k}^{2} r^{2}-m^{2}\right) y_{k} .
\end{aligned}
$$

Multiply the first by y_{k}, the second by y_{n}, and subtract to get

$$
\left(\lambda_{m k}^{2}-\lambda_{m n}^{2}\right) y_{n} y_{k} r^{2}=r y_{k}\left(r y_{n}^{\prime}\right)^{\prime}-r y_{n}\left(r y_{k}^{\prime}\right)^{\prime} .
$$

Now divide by r :

$$
\begin{aligned}
\left(\lambda_{m k}^{2}-\lambda_{m n}^{2}\right) y_{n} y_{k} r & =y_{k}\left(r y_{n}^{\prime}\right)^{\prime}-y_{n}\left(r y_{k}^{\prime}\right)^{\prime} \\
& =y_{k}\left(r y_{n}^{\prime}\right)^{\prime}+y_{k}^{\prime} r y_{n}^{\prime}-y_{n}^{\prime} r y_{k}^{\prime}-y_{n}\left(r y_{k}^{\prime}\right)^{\prime} \\
& =\left(y_{k} r y_{n}^{\prime}-y_{n} r y_{k}^{\prime}\right)^{\prime} .
\end{aligned}
$$

Now integrate both sides:

$$
\begin{equation*}
\left(\lambda_{m k}^{2}-\lambda_{m n}^{2}\right) \int_{0}^{a} y_{n} y_{k} r d r=y_{k} r y_{n}^{\prime}-\left.y_{n} r y_{k}^{\prime}\right|_{0} ^{a} \tag{4}
\end{equation*}
$$

Finally, we have

$$
y_{n}(a)=J_{m}\left(\lambda_{m n} a\right)=J_{m}\left(\frac{\alpha_{m n}}{a} a\right)=J_{m}\left(\alpha_{m n}\right)=0
$$

and likewise $y_{k}(a)=0$. So, the right hand side of (4) equals zero.

Since $\lambda_{m k} \neq \lambda_{m n}$ for $k \neq n$, it must be the case that

$$
0=\int_{0}^{a} y_{n} y_{k} r d r=\int_{0}^{a} J_{m}\left(\lambda_{m n} r\right) J_{m}\left(\lambda_{m k} r\right) r d r
$$

which is what we needed to show.

- In the case of the inner product of $J_{m}\left(\lambda_{m n} r\right)$ with itself, we have the complementary relation

$$
\int_{0}^{a} J_{m}^{2}\left(\lambda_{m n} r\right) r d r=\frac{a^{2}}{2} J_{m+1}^{2}\left(\alpha_{m n}\right)
$$

for $n=1,2,3, \ldots$. The proof is outlined in exercise 4.8.36.

- Although we have assumed that the order m is an integer, these relations hold for arbitrary $m \geq 0$.

Initial conditions revisited

Recall that the general solution to the vibrating circular membrane problem (1) - (3) is

$$
\begin{aligned}
u(r, \theta, t)= & \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\lambda_{m n} r\right)\left(a_{m n} \cos m \theta+b_{m n} \sin m \theta\right) \cos c \lambda_{m n} t \\
& +\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\lambda_{m n} r\right)\left(a_{m n}^{*} \cos m \theta+b_{m n}^{*} \sin m \theta\right) \sin c \lambda_{m n} t
\end{aligned}
$$

and that the coefficients $a_{m n}$ and $b_{m n}$ are given by the FourierBessel expansion of the initial shape $f(r, \theta)$:

$$
f(r, \theta)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\lambda_{m n} r\right)\left(a_{m n} \cos m \theta+b_{m n} \sin m \theta\right)
$$

As previously noted, the orthogonality relations allow us express the Fourier-Bessel coefficients as ratios of inner products.

Determining $a_{m n}$ and $b_{m n}$

If $f(r, \theta)$ is "sufficiently nice," then we have

$$
a_{m n}=\frac{\left\langle f, \phi_{m n}\right\rangle}{\left\langle\phi_{m n}, \phi_{m n}\right\rangle}=\frac{\int_{0}^{2 \pi} \int_{0}^{a} f(r, \theta) J_{m}\left(\lambda_{m n} r\right) \cos (m \theta) r d r d \theta}{\int_{0}^{2 \pi} \int_{0}^{a} J_{m}^{2}\left(\lambda_{m n} r\right) \cos ^{2}(m \theta) r d r d \theta}
$$

for $m \geq 0, n \geq 1$. Using the complementary orthogonality relation, the integral in the denominator is equal to
$\int_{0}^{2 \pi} \cos ^{2}(m \theta) d \theta \int_{0}^{a} J_{m}^{2}\left(\lambda_{m n} r\right) r d r= \begin{cases}\pi a^{2} J_{1}^{2}\left(\alpha_{0 n}\right) & \text { if } m=0, \\ \frac{\pi a^{2}}{2} J_{m+1}^{2}\left(\alpha_{m n}\right) & \text { if } m \geq 1 .\end{cases}$

We finally find that

$$
\begin{aligned}
& a_{0 n}=\frac{1}{\pi a^{2} J_{1}^{2}\left(\alpha_{0 n}\right)} \int_{0}^{2 \pi} \int_{0}^{a} f(r, \theta) J_{0}\left(\lambda_{0 n} r\right) r d r d \theta \\
& a_{m n}=\frac{2}{\pi a^{2} J_{m+1}^{2}\left(\alpha_{m n}\right)} \int_{0}^{2 \pi} \int_{0}^{a} f(r, \theta) J_{m}\left(\lambda_{m n} r\right) \cos (m \theta) r d r d \theta
\end{aligned}
$$

and likewise

$$
b_{m n}=\frac{2}{\pi a^{2} J_{m+1}^{2}\left(\alpha_{m n}\right)} \int_{0}^{2 \pi} \int_{0}^{a} f(r, \theta) J_{m}\left(\lambda_{m n} r\right) \sin (m \theta) r d r d \theta,
$$

for $m, n=1,2,3, \ldots$

Formulas for $a_{m n}^{*}$ and $b_{m n}^{*}$

Referring back to the Fourier-Bessel expansion of $g(x, y)$ and using the same line of reasoning leads to the analogous formulae

$$
\begin{aligned}
& a_{0 n}^{*}=\frac{1}{\pi c \alpha_{0 n} a J_{1}^{2}\left(\alpha_{0 n}\right)} \int_{0}^{2 \pi} \int_{0}^{a} g(r, \theta) J_{0}\left(\lambda_{0 n} r\right) r d r d \theta \\
& a_{m n}^{*}=\frac{2}{\pi c \alpha_{m n} a J_{m+1}^{2}\left(\alpha_{m n}\right)} \int_{0}^{2 \pi} \int_{0}^{a} g(r, \theta) J_{m}\left(\lambda_{m n} r\right) \cos (m \theta) r d r d \theta \\
& b_{m n}^{*}=\frac{2}{\pi c \alpha_{m n} a J_{m+1}^{2}\left(\alpha_{m n}\right)} \int_{0}^{2 \pi} \int_{0}^{a} g(r, \theta) J_{m}\left(\lambda_{m n} r\right) \sin (m \theta) r d r d \theta
\end{aligned}
$$

for $m, n=1,2,3, \ldots$.

