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Recall:

The vibrations in a thin circular membrane of radius a can be
modeled by the boundary value problem

utt = c2

(

urr +
1

r
ur +

1

r2
uθθ

)

, 0 < r < a, t > 0, (1)

u(a, θ, t) = 0, 0 ≤ θ ≤ 2π, t > 0 (2)

u(r , 0, t) = u(r , 2π, t),

uθ(r , 0, t) = uθ(r , 2π, t), 0 < r < a, t > 0. (3)

Here we have centered the membrane at the origin in the xy -plane,
(r , θ) are polar coordinates, and

u(r , θ, t) =
deflection of membrane from equilibrium at
position (r , θ) and time t.
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Normal modes of the vibrating circular membrane

Using separation of variables we found the normal modes

umn(r , θ, t) = Jm(λmnr) (amn cos mθ + bmn sinmθ) cos cλmnt,

u∗

mn(r , θ, t) = Jm(λmnr) (a∗mn cos mθ + b∗

mn sinmθ) sin cλmnt

for m = 0, 1, 2, . . ., n = 1, 2, 3, . . ., where

Jm is the Bessel function of order m of the first kind,

λmn = αmn/a, and

αmn is the nth positive zero of Jm.

We’ll briefly review what we know about Bessel functions of the
first kind.
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Bessel functions of the first kind

Given p ≥ 0, Jp(x) is a particular solution to the Bessel equation
of order p

x2y ′′ + xy ′ + (x2 − p2)y = 0, x > 0.

Relevant properties include:

Jp has infinitely many positive zeros, which we denote by

0 < αp1 < αp2 < αp3 < · · ·

J0(0) = 1 and Jp(0) = 0 for p > 0.

Jp is oscillatory and tends to zero as x → ∞. More precisely,

Jp(x) ∼

√

2

πx
cos

(

x −
pπ

2
−
π

4

)

.
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Picture:

The values of Jp always lie between 1 and −1.

The distance between successive zeros αpn and αp,n+1 of Jp

approaches π as n → ∞.

For 0 < p < 1, the graph of Jp has a vertical tangent line at
x = 0.

For 1 < p, the graph of Jp has a horizontal tangent line at
x = 0, and the graph is initially “flat.”
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The general solution to the vibrating circular membrane

problem

Superposition of the normal modes gives the general solution to
(1) - (3)

u(r , θ, t) =

∞
∑

m=0

∞
∑

n=1

Jm(λmnr) (amn cos mθ + bmn sinmθ) cos cλmnt

+

∞
∑

m=0

∞
∑

n=1

Jm(λmnr) (a∗mn cos mθ + b∗

mn sinmθ) sin cλmnt.

We now need to determine the values of the coefficients amn, bmn,
a∗mn and b∗

mn so that the solution satisfies the initial conditions

u(r , θ, 0) = f (r , θ), ( the initial shape),

ut(r , θ, 0) = g(r , θ), ( the initial velocity).
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Setting t = 0 in the general solution we find that these conditions
require us to satisfy

f (r , θ) = u(r , θ, 0) =
∞
∑

m=0

∞
∑

n=1

Jm(λmnr) (amn cos mθ + bmn sinmθ)

g(r , θ) = ut(r , θ, 0) =

∞
∑

m=0

∞
∑

n=1

cλmnJm(λmnr) (a∗mn cos mθ + b∗

mn sinmθ)

We find that:

The coefficients amn and bmn only have to do with the initial
shape, and a∗mn and b∗

mn only have to do with the initial
velocity.

The relationship between amn, bmn and f (r , θ) is (up to a
factor of cλmn) the same as the relationship between a∗mn,
b∗

mn and g(r , θ).
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Fourier-Bessel expansions

The initial shape equation

f (r , θ) =
∞
∑

m=0

∞
∑

n=1

Jm(λmnr) (amn cos mθ + bmn sinmθ)

is called the Fourier-Bessel expansion of f . It requires us to
write f (r , θ) as a linear combination of the functions

φmn(r , θ) = Jm(λmnr) cos mθ and ψmn(r , θ) = Jm(λmnr) sinmθ

for m = 0, 1, 2, . . ., n = 1, 2, 3 . . ..

As usual, we can use orthogonality to express the coefficients in
this combination as ratios of inner products (integrals).
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Orthogonality

Theorem

The functions

φmn(r , θ) = Jm(λmnr) cos mθ and ψmn(r , θ) = Jm(λmnr) sinmθ

(m = 0, 1, 2, . . ., n = 1, 2, 3 . . .) form a complete orthogonal set of
functions relative to the inner product

〈f , g〉 =

∫ 2π

0

∫ a

0

f (r , θ)g(r , θ)r dr dθ.

That is,

〈φmn, φjk〉 = 〈ψmn, ψjk〉 = 0 for (m, n) 6= (j , k),

〈φmn, ψjk〉 = 0 for all (m, n) and (j , k).
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Proving orthogonality

We will prove the orthogonality of the functions

φmn(r , θ) = J(λmnr) cos mθ.

The other cases will be left as exercises. If (m, n) 6= (j , k), we have

〈φmn, φjk〉 =

∫ 2π

0

∫ a

0

Jm(λmnr) cos(mθ) Jj(λjk r) cos(jθ)r dr dθ

=

∫ 2π

0

cos(mθ) cos(jθ) dθ

∫ a

0

Jm(λmnr) Jj(λjk r) r dr .

By orthogonality of the functions {cos mθ} on [0, 2π], the first
integral is zero if m 6= j . What if m = j?
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If m = j then the first integral is not zero. So to establish
orthogonality in this case we must show that

∫ a

0

Jm(λmnr) Jm(λmk r) r dr = 0 if n 6= k.

This says that the functions Jm(λmnr), m = 0, 1, 2 . . ., are
orthogonal on the interval [0, a] relative to the inner product

〈f , g〉 =

∫ a

0

f (r)g(r)r dr .

Note the presence of the function w(r) = r in this inner
product. It is called a weight function.

Inner products with weight functions figure prominently in
Sturm-Liouville theory.
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Orthogonality of Bessel functions

The function y = Jm(λr) satisfies the ODE

r2y ′′ + ry ′ + (λ2r2 − m2)y = 0.

This is equivalent to:

r(ry ′)′ = −(λ2r2 − m2)y .

Taking yn = Jm(λmnr) and yk = Jm(λmk r) (for convenience) gives

r(ry ′

n)
′ = −(λ2

mnr
2 − m2)yn

r(ry ′

k)′ = −(λ2
mk r2 − m2)yk .

Multiply the first by yk , the second by yn, and subtract to get

(λ2
mk − λ2

mn)ynyk r2 = ryk(ry ′

n)
′ − ryn(ry

′

k)′.
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Now divide by r :

(λ2
mk − λ2

mn)ynyk r = yk(ry ′

n)
′ − yn(ry

′

k)′

= yk(ry ′

n)
′ + y ′

k ry ′

n − y ′

nry
′

k − yn(ry
′

k)′

= (yk ry ′

n − ynry
′

k)′.

Now integrate both sides:

(λ2
mk − λ2

mn)

∫ a

0

ynyk r dr = yk ry ′

n − ynry
′

k

∣

∣

∣

∣

a

0

. (4)

Finally, we have

yn(a) = Jm(λmna) = Jm

(αmn

a
a
)

= Jm(αmn) = 0

and likewise yk(a) = 0. So, the right hand side of (4) equals zero.
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Since λmk 6= λmn for k 6= n, it must be the case that

0 =

∫ a

0

ynyk r dr =

∫ a

0

Jm(λmnr)Jm(λmk r)r dr

which is what we needed to show.

In the case of the inner product of Jm(λmnr) with itself, we
have the complementary relation

∫ a

0

J2
m(λmnr)r dr =

a2

2
J2
m+1(αmn)

for n = 1, 2, 3, . . .. The proof is outlined in exercise 4.8.36.

Although we have assumed that the order m is an integer,
these relations hold for arbitrary m ≥ 0.
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Initial conditions revisited

Recall that the general solution to the vibrating circular membrane
problem (1) - (3) is

u(r , θ, t) =

∞
∑

m=0

∞
∑

n=1

Jm(λmnr) (amn cos mθ + bmn sinmθ) cos cλmnt

+
∞

∑

m=0

∞
∑

n=1

Jm(λmnr) (a∗mn cos mθ + b∗

mn sinmθ) sin cλmnt.

and that the coefficients amn and bmn are given by the Fourier-
Bessel expansion of the initial shape f (r , θ):

f (r , θ) =
∞
∑

m=0

∞
∑

n=1

Jm(λmnr) (amn cos mθ + bmn sinmθ) .

As previously noted, the orthogonality relations allow us express
the Fourier-Bessel coefficients as ratios of inner products.
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Determining amn and bmn

If f (r , θ) is “sufficiently nice,” then we have

amn =
〈f , φmn〉

〈φmn, φmn〉
=

∫ 2π

0

∫ a

0

f (r , θ)Jm(λmnr) cos(mθ) r dr dθ

∫ 2π

0

∫ a

0

J2
m(λmnr) cos2(mθ) r dr dθ

for m ≥ 0, n ≥ 1. Using the complementary orthogonality relation,
the integral in the denominator is equal to

∫ 2π

0

cos2(mθ) dθ

∫ a

0

J2
m(λmnr) r dr =















πa2J2
1 (α0n) if m = 0,

πa2

2
J2
m+1(αmn) if m ≥ 1.
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We finally find that

a0n =
1

πa2J2
1 (α0n)

∫ 2π

0

∫ a

0

f (r , θ) J0(λ0nr) r dr dθ,

amn =
2

πa2J2
m+1(αmn)

∫ 2π

0

∫ a

0

f (r , θ) Jm(λmnr) cos(mθ) r dr dθ,

and likewise

bmn =
2

πa2J2
m+1(αmn)

∫ 2π

0

∫ a

0

f (r , θ) Jm(λmnr) sin(mθ) r dr dθ,

for m, n = 1, 2, 3, . . ..
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Formulas for a
∗
mn and b

∗
mn

Referring back to the Fourier-Bessel expansion of g(x , y) and using
the same line of reasoning leads to the analogous formulae

a∗0n =
1

πcα0naJ2
1 (α0n)

∫ 2π

0

∫ a

0

g(r , θ) J0(λ0nr) r dr dθ,

a∗mn =
2

πcαmnaJ2
m+1(αmn)

∫ 2π

0

∫ a

0

g(r , θ) Jm(λmnr) cos(mθ) r dr dθ,

b∗

mn =
2

πcαmnaJ
2
m+1(αmn)

∫ 2π

0

∫ a

0

g(r , θ) Jm(λmnr) sin(mθ) r dr dθ,

for m, n = 1, 2, 3, . . ..
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