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Bessel function identities

Recall:

In polar coordinates, the shape of a vibrating thin circular
membrane of radius a can be modeled by

(r,0, t)—ZZJ Amnt) (@mn €0s MO + by, sin m) cos cAmpt
m=0 n=1

+ Z Z Im(Amnr) (@, cos mé + by, sin mf) sin cAppt
m=0 n=1

where

@ J,, is the Bessel function of order m of the first kind,
® \mn = Qmn/a, and

® «p is the nth positive zero of J,.
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Bessel function identities

The coefficients amp, bmn, a5, and b}, are related to to the initial
shape f(r,0) and initial velocity g(r,0) through integrals derived
using orthogonality, e.g.

2 /2#/3
amn = —5—5———— f(r,0)JJm(Amnr) cos(m@) rdrdf,
T oy b 0 ) cos(mt)

formn=123 ...

@ As much as possible, we would like to use standard integral
calculus techniques to evaluate these integrals.

@ This requires us to establish certain differentiation and
integration identities involving Bessel functions.
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Bessel function identities

Differentiation identities

Using the power series definition of J,(x), one can show that:

% (xPIp(x)) = xPJp_1(x), (1)
% (xPIp(x)) = —x"Pdpy1(x). ()

The product rule and cancellation lead to
)(x) + pdol(x) = xJp-1(x),
xJp(x) = pdp(x) = —xIpy1(x).
Addition and subtraction of these identities then yield
Jp-1(x) = Jpt1(x) = 2J5(),

Jpa() + dpia () = L p(x).
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Bessel function identities

Integration identities

Integration of the differentiation identities (1) and (2) gives
[ 3 bl e = X3+ € 3)
/x_p+1Jp(x) dx = —x"Pt1J,_1(x) + C.

o Exercises 4.2.12 and 4.3.9 give similar identities.

@ |dentities such as these can be used to evaluate certain
integrals of the form

/a f(r)dm(Amnr)rdr.
0

@ Such integrals frequently occur in the coefficients of the
solution to the vibrating membrane problem.
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Bessel function identities

Evaluate

/Xp+5Jp(X) dx.
We integrate by parts, first taking

u=x* dv = xPT J,(x) dx

du = 4x3 dx v=xPT ], 1(x),

which gives

/xp+5Jp(x) dx = xPT° J,11(x) — 4/xp+4Jp+1(x) dx.

Daileda Circular membrane examples



Bessel function identities

Now integrate by parts again with

u=x° dv = xP*2 ), 1(x) dx

du = 2x dx v =xPT2J,15(x),

to get
/xp+5Jp(x) dx = xP° o1 (x) — 4/Xp+4Jp+1(X) dx

= xPt5 1 (x) — 4 <Xp+4Jp+2(X) - 2/Xp+3Jp+2(X) dx>

= | xP2 pi1(x) — 4xPT4 Uy 0(x) 4 8xPT3 Uy 3(x) + C.
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Radially symmetric vibrations

A radially symmetric example

Solve the vibrating membrane problem with a = ¢ = 1 and initial
conditions
f(r,0)=1—r* g(r,0)=0.

Because g(r,6) = 0, we immediately find that a},, = b};,, = 0 for
all m and n. Moreover, because f(r,8) = f(r) does not depend on
6 (f is radially symmetric)

2 /2#/1
amn = —5——— f(r)Jm(amnr) cos(mb)r drdf
o) Jo o (r)Jm(ctmnr) cos(md)

2 2m a
= 27/ cos(mf) d9/ f(r)Im(amnr)r dr
7TJm+1(0‘mn) 0 0
|
0
=0 if m>1.
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Radially symmetric vibrations

Likewise, by, = 0 for all m, n > 1. Finally, we have

2w
agn = / / (r)Jo(cwonr)r drdd
7TJ (con)

= / (1 — r*)do(conr)r dr

J12(a0n) 0

substitutex=ag,r

2 /ao,, < X4 >
= - 1— — | Jo(x)x dx
aOnJI (Ot(),,) 0 aOn 0( )

2 Qon

Q0n 1
= xJo(x) dx ——— x° Jo(x) dx
%n-/l (con) /0 On 0

A B
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Radially symmetric vibrations

The integral A is

Qon

Qon
/ xJo(x) dx = xJi(x)| = aondi(on).
0

0
The integral B is

Qon

Qon
/ X% Jo(x) dx = x®Jy(x) — 4x* Jo(x) + 8x3 J3(x)
0

0

= agnJl(Ozo,,) — 4aénJ2(ao,,) + 8a8nJ3(aon).
Consequently

1

A g, B = Haloon) a5, s(0n)
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Radially symmetric vibrations

Putting these all together we get

2
———— (4 h(agy) — 8al k(a n
2 R(aon) (4J2(cx0n) on J3(con))

_ 8 (aonda(con) — 2J3(von))
a(3)nJ12(a0n) '

aon =

Because amp = byn = 0 for m > 1, we find that

> 8 aOnJ2 aOn) - 2./3(040,,))
(r,0,t) nz::l Oéo,,J2(0é0n) Jo(aonr) cos(agnt).

@ The coefficients ag, can actually be expressed in terms of J;
only, by using the final differentiation identity from above.

@ Any time the initial conditions are radially symmetric, the
solution takes a similar form.
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Non-symmetric vibrations

A non-symmetric example

Solve the vibrating membrane problem with a = c = 1 and initial
conditions

f(r,0)=r(1—r*) cosf, g(r,0)=0.

As before, we have a},, = b}, = 0 for all m, n. We also have

2 2 pl
bmn = 27/ / r(1 — r*) cos 0 Jp(amnr) sin(m0)r drd§
7TJm+1(amn) 0 0 T

2 /‘271‘ . /1 .
= cosfsin(mb) db r(L—r") dn(amnr)r dr
2 (am) Jo (mo) A ( ) Im(ctmnr)

0

=0 forall m,n.
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Non-symmetric vibrations

Additionally,

1 /2#/1 .
aogn = ———— r(1—r*) cos0Jm(ctmnr)r drdf
7TJr2n+1(amn) 0o Jo ( ) ( )

1 2 1
= 27/ cos 6 d9/ r(1 — rYYJm(amnr)r dr
7TJm+1(04mn) 0 0

0
207

and

2 2m rl
Amn = 27/ / r(1 — r*) cos 8 Jm(amnr) cos(mb)r drdf
7er+1(am”) 0 JO

2w 1
=—F— 2 / cos 6 cos(mb) d9/ r(1 = r*)Jm(cmnr)r dr.
T mi1(amn) Jo 0

A
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Non-symmetric vibrations

The integral A is zero unless m = 1, in which case it's equal to 7.
In this case

2 /1 .
ain=—5—— r(1 — r*)Ji(ainr)rdr
J22(041n) 0 ( ) ( )

2 ! 2 ! 6
_ Ji(aznr) dr — Ji(ainr)dr) .
J22(041n) </0 reJi(ainr) dr /0 r°Ji(anr) r>

Substituting x = a1, and proceeding as before one can show

1
J n
/ r?h(ainr) dr = %
0 1n
1
S(a1n 4 J3(a1p 8Ja(a1p
/ r®Ji(ounr) dr = L 3(;11 ) 4 4(3041 )
0 A1p as, ol
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Non-symmetric vibrations

Assembling these formulae gives

2 <4J3(a1n) _ 8J4(a1,,)>

din = J22(O£1,7) a%n a%n
_ 8 (a1nS(a1n) — 2Ja(cv1n))
Oéi’ngz(Oéln) .

Since all the other coefficients are zero,

8 (candz(a1n) — 2Ja(a1n))
0,t) = cosb E J1(a1n nt).
u(r,0,t) = cos o3 B(onn) 1(a1nr) cos(aint)

As in the previous example, one may express the coefficients
entirely in terms of J, using the final differentiation identity.
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Non-symmetric vibrations

Remarks

@ In general, one should not expect the solution to reduce to a
single series.

o If g(r,0) #0:
o Computations similar to those above must be carried out to
determine aj,, and b},,.
¢ This adds an additional series to the solution.
o If f(r,8) or g(r,0) is “too complicated,” one can use Maple
to help evaluate the integrals defining the coefficients of the
solution.
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A computational example

A “complicated” example

Solve the vibrating membrane problem with a=2, c =1 and
initial conditions

f(r,0) =0, g(r,0)=r?2—r)sin® <g> :

Since f =0, amp =0, bypy, = 0. We also have b}, = 0 since

b =
2 /27r sin® <Q> sin(m0) d6 /2 r?(2 = r)dm(Amar)r dr
7Tamn2J,2n_|_1(amn) 0 2 0 e ’

0

because the 6 integrand is odd and 27-periodic.
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A computational example

The other coefficients are given by

i 1 2 . 0 2
agn :m/ sin® <§> db / r?(2 — r)Jo(Xonr)r dr,
* 2 / sin < > cos(mf) dH/ 2(2 = )dm(Amnr)r dr.

amn
7rozm,,2Jm+1 (mn)

These integrals and the overall solution are best left to computer

evaluation.
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