Exercise 1. Let

$$
f(x)= \begin{cases}x+1 & \text { if } 0 \leq x<1 \\ 2 & \text { if } 1<x \leq 2\end{cases}
$$

a. Find the sine series expansion of $f(x)$.
b. Find the cosine series expansion of $f(x)$.
c. Sketch the graphs of the functions to which these series converge, on the interval $-4 \leq$ $x \leq 4$.

Exercise 2. Find the complex form of the Fourier series for the $2 p$-periodic function

$$
g(x)= \begin{cases}-\frac{2}{p}(x+p / 2) & \text { if }-p \leq x<0 \\ -\frac{2}{p}(x-p / 2) & \text { if } 0 \leq x<p \\ g(x+2 p) & \text { otherwise }\end{cases}
$$

by:
a. Using the integral formulas for the coefficients.
b. Using the real form of the Fourier series given in textbook exercise 2.3.7.

Exercise 3. Solve the boundary value problem

$$
\begin{array}{rlrl}
u_{t t} & =16 u_{x x}, & 0<x<3, t>0 \\
u(0, t) & =u(3, t)=0, & t \geq 0, \\
u(x, 0) & = \begin{cases}x & \text { if } 0 \leq x \leq 2, \\
2(3-x) & \text { if } 2<x \leq 3,\end{cases} \\
u_{t}(x, 0) & =\sin \pi x+\frac{1}{2} \sin 2 \pi x+3 \sin 3 \pi x, & 0 \leq x \leq 3 .
\end{array}
$$

Exercise 4. A bar of length π and thermal diffusivity 1 is heated so that its temperature at a point x is given by $h(x)=50 x(\pi-x)$. The lateral surface of the bar is then insulated,
the left end is held at a temperature of 100 , and the right end is held at a temperature of 50. Determine the temperature in the bar at any later time.

Exercise 5. Use separation of variables to reduce the PDE boundary value problem

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =g\left(x \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial x}\right), & & 0<x<L, t>0 \\
u(L, t) & =0, & & t \geq 0
\end{aligned}
$$

to a system of two ODEs with boundary conditions. Here g and L are unspecified positive constants.

Exercise 6. Consider the heat boundary value problem given by

$$
\begin{aligned}
u_{t} & =c^{2} u_{x x}, & & 0<x<L, t>0 \\
u_{x}(0, t) & =\kappa_{1} u(0, t), & & t \geq 0, \\
u_{x}(L, t) & =-\kappa_{2} u(L, t), & & t \geq 0, \\
u(x, 0) & =f(x), & & 0 \leq x \leq L,
\end{aligned}
$$

in which κ_{1} and κ_{2} are positive constants.
a. Provide a physical interpretation of this problem.
b. Use separation of variables to obtain a pair of ODE boundary value problems.
c. Show that the separation constant k in part \mathbf{b} must be negative: $k=-\mu^{2}$. Find the equation satisfied by μ, and show that this equation has infinitely many positive solutions

$$
\mu_{1}<\mu_{2}<\mu_{3}<\cdots
$$

d. Given an n, find the normal mode corresponding to μ_{n}.

Exercise 7. Let

$$
\begin{aligned}
& X_{0}(x)=e^{-x}, \\
& X_{n}(x)=n \pi \cos n \pi x-\sin n \pi x, \quad n \geq 1 .
\end{aligned}
$$

Show that the functions $X_{0}, X_{1}, X_{2}, \ldots$ are pairwise orthogonal on the interval $[0,1]$.

Exercise 8. A thin elastic membrane is stretched and fixed to a square frame with unit side length. The membrane is deformed to have shape given by $f(x, y)=\sin 3 \pi x \sin \pi y$ and is pulled up everywhere with unit velocity. Find a function that describes the resulting motion of the membrane.

