Partial Differential Equations
Exam 3 Review Exercises Spring 2012

Exercise 1. Solve the Dirichlet problem $\nabla^{2} u=0$ on the rectangle $[0,2] \times[0,2]$ subject to the boundary conditions

$$
\begin{array}{lll}
u(0, y)=50 y^{2}, & u(2, y)=50(2-y), & 0 \leq y \leq 2 \\
u(x, 0)=50 x, & u(x, 2)=50(2-x)^{2}, & 0 \leq x \leq 2 .
\end{array}
$$

Exercise 2. Show that the substitution $z=2 e^{-x / 2}$ transforms the ODE

$$
y^{\prime \prime}+e^{-x} y=0
$$

into a Bessel equation.

Exercise 3.

a. Use the result of Example 1 in section 4.7 and equation (6) to show that

$$
J_{5 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(\left(\frac{3}{x^{2}}-1\right) \sin x-\frac{3}{x} \cos x\right) .
$$

b. Use equation (6) from section 4.8 to express J_{5} in terms of J_{0} and J_{1}.

Exercise 4. An elastic membrane is stretched across a circular frame of radius 5 (centered at the origin in the $x y$-plane) and is imparted with an initial velocity described in polar coordinates by

$$
g(r, \theta)=\left(25-r^{2}\right) r^{3} \cos 3 \theta .
$$

Give an expression for the shape of the membrane at all later times.

Exercise 5. [5\% extra credit] A perfectly elastic membrane is attached to a rigid circular frame of radius 1. Its center is pulled to a height of 0.1 and then released. Assuming that the constant c in the wave equation is equal to 1 , use Maple to produce a (smooth) animation of the resulting motion of the membrane for the next 10 units of time.

Exercise 6. Consider the boundary value problem

$$
\begin{align*}
& \left(1-x^{2}\right) y^{\prime \prime}-3 x y^{\prime}+n(n+2) y=0, \quad-1<x<1 \tag{1}\\
& y \text { bounded for }-1<x<1 \tag{2}
\end{align*}
$$

a. Show that (1)-(2) is a singular Sturm-Liouville problem. Be sure to give every reason that this problem is not regular.
b. Prove orthogonality of the eigenfunctions of (1)-(2).

Exercise 7. Consider the boundary value problem

$$
\begin{array}{ll}
u_{x x}-x u_{t}=0, & t>0, \quad 0<x<1, \\
u(0, t)=u(1, t)=0, & \\
u(x, 0)=f(x), & 0 \leq x \leq 1 .
\end{array}
$$

- Show that separation of variables yields a regular Sturm-Liouville problem.
- Use S-L theory to give the general solution to this problem (you may assume that f is a C^{1} function).

