
Partial Differential Equations Exam 3 Review
Spring 2012 Solutions

Exercise 1. We utilize the general solution to the Dirichlet problem in rectangle given in
the textbook on page 168. In the notation used there and on page 167, we have a = b = 2,
f1(x) = 50x, f2(x) = 50(2 − x)2, g1(y) = 50y2 and g2(y) = 50(2 − y). It follows that the
coefficients in the series solution are

An =
1

sinhnπ

∫ 2

0

50x sin
nπx

2
dx =

200(−1)n+1

nπ sinhnπ
,

Bn =
1

sinhnπ

∫ 2

0

50(2 − x)2 sin
nπx

2
dx =

400 (2((−1)n − 1) + n2π2)

n3π3 sinhnπ
,

Cn =
1

sinhnπ

∫ 2

0

50y2 sin
nπy

2
dy =

400 (2((−1)n − 1) + (−1)n+1n2π2)

n3π3 sinhnπ
,

Dn =
1

sinhnπ

∫ 2

0

50(2 − y) sin
nπy

2
dy =

200

nπ sinhnπ
.

The complete solution is then given by

u(x, y) =
∞∑
n=1

An sin
nπx

2
sinh

nπ(2 − y)

2
+
∞∑
n=1

Bn sin
nπx

2
sinh

nπy

2

+
∞∑
n=1

Cn sinh
nπ(2 − x)

2
sin

nπy

2
+
∞∑
n=1

Dn sinh
nπx

2
sin

nπy

2
,

with An, Bn, Cn and Dn as above.

Exercise 2. This is simply an exercise in using the chain rule. If z = 2e−x/2, then on
applying the chain rule we have

dy

dx
=
dy

dz

dz

dx
= −dy

dz
e−x/2.

Another application of the chain rule (with the product rule) then yields

d2y

dx2
=

d

dx

(
−dy
dz
e−x/2

)
= − d

dx

(
dy

dz

)
e−x/2 +

1

2

dy

dz
e−x/2

= −d
2y

dz2
dz

dx
e−x/2 +

1

2

dy

dz
e−x/2 =

d2y

dz2
e−x +

1

2

dy

dz
e−x/2.

Since e−x/2 = z/2, this implies that

d2y

dx2
=
z2

4

d2y

dz2
+
z

4

dy

dz
.



Substituting this into the differential equation y′′ + e−xy = 0 and again using the fact that
e−x/2 = z/2, we get

z2

4

d2y

dz2
+
z

4

dy

dz
+
z2

4
y = 0.

Multiplying through by 4 finally gives us

z2
d2y

dz2
+ z

dy

dz
+ z2y = 0,

which is Bessel’s equation of order 0.

Exercise 3. The central idea in both parts of this exercise is to use equation (6) of section
4.8, namely

Jp+1 =
2p

x
Jp(x) − Jp−1(x), (1)

to express the given Bessel function in terms of those of lower order.

a. Equation (1) with p = 3/2 tells us that

J5/2(x) =
3

x
J3/2(x) − J1/2(x). (2)

Our goal is to get formulas for J1/2(x) and J3/2(x) and plug them in to (2). According
to Example 1 in section 4.7,

J1/2(x) =

√
2

πx
sinx. (3)

We now need a similar formula for J3/2(x). For this we turn to identity (4) of section
4.8. If we divide by −x and set p = 1/2, we find that

J3/2(x) = −J ′1/2(x) +
1

2x
J1/2(x)

= −
√

2

πx
cosx+

1

2x

√
2

πx
sinx+

1

2x

√
2

πx
sinx

= −
√

2

πx
cosx+

1

x

√
2

πx
sinx,

where we have used the expression (3) for J1/2(x). If we plug this and (3) into (2) we
obtain

J5/2(x) = −3

x

√
2

πx
cosx+

3

x2

√
2

πx
sinx−

√
2

πx
sinx

=

√
2

πx

((
3

x2
− 1

)
sinx− 3

x
cosx

)
,

which is what we were asked to show.

b. This is simply a repeated use of (1). Starting with p = 4 we get

J5(x) =
8

x
J4(x) − J3(x). (4)



Taking p = 3 gives

J4(x) =
6

x
J3(x) − J2(x),

and plugging this into (4) and simplifying we find that

J5(x) =

(
48

x2
− 1

)
J3(x) − 8

x
J2(x).

If we repeat this process using p = 2 and then p = 1 in (1), we eventually find that

J5(x) =

(
1 − 72

x2
+

384

x4

)
J1(x) +

(
12

x
− 192

x3

)
J0(x).

[Remark: There is actually a nice way to make the procedure just described much more
efficient (i.e. amenable to hand computation). The idea is to write the relationship (1)
in matrix form as (

Jp+1(x)
Jp(x)

)
=

(
2p/x −1

1 0

)(
Jp(x)
Jp−1(x)

)
.

If we let

Ap =

(
2p/x −1

1 0

)
, vp =

(
Jp(x)
Jp−1(x)

)
,

then this becomes
vp+1 = Apvp.

It then follows that

v5 = A4v4 = A4A3v3 = A4A3A2v2 = A4A3A2A1v1.

That is, (
J5(x)
J4(x)

)
= A4A3A2A1

(
J1(x)
J0(x)

)
.

Computing the matrix product A4A3A2A1 (a relatively straightforward procedure), this
immediately expresses J5(x) (and J4(x), too) in terms of J0(x) and J1(x). This same
idea can be used to quickly express any given Bessel function of the first kind in terms
of Bessel functions of lower order.]

Exercise 4. As with Exercise 1, we simply refer to the general solution to the vibrating
membrane problem as given on pages 211 and 213 in our textbook. The statement of the
problem implies that the initial shape of the membrane is f(r, θ) = 0 (i.e. the membrane is
initially flat), which according to the integral formulae on page 211 immediately tells us that

amn = bmn = 0

for all m and n. Moreover, using the given radius and initial velocity, the integral factor
appearing in the formula for a∗0n is∫ 5

0

∫ 2π

0

(25 − r2)r3 cos 3θJ0(λ0nr)r dθ dr =

∫ 5

0

∗ ∗ ∗ dr
∫ 2π

0

cos 3θ dθ︸ ︷︷ ︸
0

= 0



(we have simply written the r-integrand as ∗ ∗ ∗ since it is clearly immaterial to this compu-
tation). This implies that a∗0n = 0 for all n. Likewise, the integral factor appearing in b∗mn
separates as ∫ 5

0

∗ ∗ ∗ dr
∫ 2π

0

cos 3θ sinmθ dθ︸ ︷︷ ︸
0

= 0,

which implies that b∗mn = 0 for all m and n (the fact that the θ integral vanishes can be
observed in one of several ways: by direct antidifferentiation; by observing that the integrand
is an odd 2π-periodic function, and we are integrating over a complete period; or by utilizing
previously established orthogonality results).

We now turn to the computation of the a∗mn coefficients. Again focusing only on the
integral factor, we find that it separates to become∫ 5

0

(25 − r2)r4Jm(λmnr) dr︸ ︷︷ ︸
A

∫ 2π

0

cos 3θ cosmθ dθ︸ ︷︷ ︸
B

.

The integral B is equal to 0 unless m = 3 (as above, there are a few ways to verify this, the

simplest probably being orthogonality), in which case it is equal to π. This means a∗mn = 0,
unless m = 3. Setting m = 3, we can quickly evaluate the integral A by taking advantage of
the “useful identity” on page 211 of the textbook. It gives∫ 5

0

(25 − r2)r4J3(λ3nr) dr =

∫ 5

0

(25 − r2)r4J3 (λ3nr) dr

=
2 · 57

α2
3n

J5(α3n).

Putting these computations together we find that (taking a quick glance at equation (18) on
page 213)

a∗3n =
2

5πcα3nJ2
4 (α3n)

AB

=
4 · 56J5(α3n)

cα3
3nJ

2
4 (α3n)

.

This can be further simplified (although this isn’t strictly necessary) using identity (1) with
p = 4, which tells us that

J5(α3n) =
8

α3n

J4(α3n) − J3(α3n) =
8J4(α3n)

α3n

,

since J3(α3n) = 0. Using this in our previous expression and simplifying slightly, we end up
with

a∗3n =
500000

cα4
3nJ4(α3n)

.



Finally, we conclude that the shape of the membrane at time t is given by

u(r, θ, t) =
∞∑
n=1

a∗3nJ3(λ3nr) cos 3θ sin cλ3nt

=
500000 cos 3θ

c

∞∑
n=1

1

α4
3nJ4(α3n)

J3

(α3n

5
r
)

sin

(
cα3nt

5

)
(the “elasticity constant,” c, was unspecified, so it must appear in our solution as a param-
eter).

Exercise 5. This one’s extra credit. No hints!

Exercise 6.

a. The given differential equation is not in S-L form. However, if we multiply it by
(1 − x2)1/2 it becomes

(1 − x2)3/2y′ − 3x(1 − x2)1/2y′ + n(n+ 2)(1 − x2)1/2y = 0,

which is the same as

((1 − x2)3/2y′)′ + n(n+ 2)(1 − x2)1/2y = 0.

This is in S-L form, with p(x) = (1 − x2)3/2, q(x) = 0 and r(x) = (1 − x2)1/2 (with
parameter λ = n(n+ 2)). The given problem is singular because:

– The boundary conditions are not of the correct form (see equation (2) of section
6.2).

– The function p(x) is not positive for −1 ≤ x ≤ 1, since p(−1) = p(1) = 0.

– The function r(x) is not positive for −1 ≤ x ≤ 1, since r(−1) = r(1) = 0.

b. Suppose that y1 and y2 are eigenfunctions of the problem in question, with distinct
eigenvalues. In class we showed that y1 and y2 are guaranteed to be orthogonal (on the
interval [−1, 1], with respect to the weight function r(x) = (1 − x2)1/2) provided that

p(x) (y′1(x)y2(x) − y′2(x)y1(x))

∣∣∣∣1
−1

= 0. (5)

Because p(−1) = p(1) = 0 (as noted above), this is immediate, thereby verifying or-
thogonality.

Exercise 7. Separating variables, we assume that u(x, t) = X(x)T (t) and plug into the
given PDE, yielding

X ′′T − xXT ′ = 0.

Dividing by xXT , this becomes
X ′′

xX
− T ′

T
= 0,



or
X ′′

xX
=
T ′

T
= −λ

for some constant λ, since the first two terms depend on different independent variables.
Reorganizing slightly, we obtain the two ODEs

X ′′ + λxX = 0, (6)

T ′ + λT = 0. (7)

Because we seek nontrivial solutions, the given boundary conditions also tell us that

X(0) = X(1) = 0.

The equation for X is in S-L form with p(x) = 1, q(x) = 0 and r(x) = x.

The conditions X(0) = 0 and X(1) = 0 are “regular” (see equation (2) of section 6.2), but
the fact that r(0) = 0 means that the boundary value problem for X is actually singular.1

Nonetheless, the fact that the boundary conditions are regular implies the eigenfunctions for
distinct eigenvalues are orthogonal on [0, 1] with respect to the weight r(x) = x. Moreover,
one can show directly that the eigenvalues form an increasing sequence

λ1 < λ2 < λ3 < · · ·

that tends to infinity, that (up to a scalar multiple) the eigenfunction Xn(x) associated with
λn is unique, and that the “Fourier” convergence theorem holds for these eigenfunctions.2

Taking this as given, equation (7) tells us that

T (t) = Tn(t) = e−λnt

so that the normal modes of the original boundary value problem are

un(x, t) = Xn(x)e−λnt,

and the general solution is given by

u(x, t) =
∞∑
n=1

cnXn(x)e−λnt.

The initial condition gives

f(x) = u(x, 0) =
∞∑
n=1

cnXn(x),

with (according to the “Fourier” convergence result quoted above)

cn =

∫ 1

0

f(x)Xn(x)x dx∫ 1

0

X2
n(x)x dx

.

1According to my notes, I originally intended to use the interval 1 ≤ x ≤ 2. This would have kept the problem regular, since
then p and r would have been positive throughout the interval.

2This is automatically true of any regular S-L problem, and a brief sketch of the derivation of these facts in this particular
(singular) case is given below.



[Remark: Changing variables (specifically by first substituting y = x−1/2X, followed
by setting s = 2x3/2/3), one can transform the equation X ′′ + λxX = 0 into the parametric
Bessel equation of order 1/3. Imposing the boundary conditions one can then show that
nonzero solutions are possible only for λ > 0, and after back substitution one can show that
in this case the eigenvalues and eigenfunctions are

λn =
9α2

1/3,n

4
,

Xn(x) = x1/2J1/3
(
α1/3,nx

3/2
)

for n = 1, 2, 3, . . .. Aside from the completeness statement (i.e. that “Fourier” convergence
holds), this proves the claims made above.]


