Number Theory
Spring 2014
Assignment 2.2
Due January 28

Throughout the following exercises, f_{n} denotes the nth Fibonacci number:

$$
f_{0}=0, f_{1}=1, f_{n+2}=f_{n+1}+f_{n} \text { for } n \geq 0 .
$$

Exercise 1. Prove that for $n \geq 1$

$$
\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)^{n}=(-1)^{n}\left(\begin{array}{cc}
f_{n-1} & -f_{n} \\
-f_{n} & f_{n+1}
\end{array}\right) .
$$

Exercise 2. Prove that for $n \geq 1$

$$
\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)^{n-1}=(-1)^{n}\left(\begin{array}{cc}
f_{n-1} & -f_{n} \\
-f_{n+1} & f_{n+2}
\end{array}\right) .
$$

Exercise 3. Prove that for $n \geq 1$

$$
f_{n-1} f_{n+2}-f_{n} f_{n+1}=(-1)^{n} .
$$

[Suggestion: Use the preceding exercises and the (matrix version of the) Euclidean Algorithm computation of $\left(f_{n+2}, f_{n+1}\right)$.]

