Number Theory
Spring 2014
Assignment 3.2
Due February 4

Exercise 1. Textbook exercise 1.44

Exercise 2. Textbook exercise 1.76

Exercise 3. Textbook exercise 1.83

Exercise 4. Textbook exercise 1.87

Exercise 5. The Hilbert monoid is the set

$$
H=1+4 \mathbb{N}_{0}=\{1+4 k \mid k \in \mathbb{N}\}
$$

a. Show that H is closed under multiplication, i.e. prove that if $a, b \in H$, then $a b \in H$.
b. Define an element $a \in H$ to be irreducible ${ }^{1}$ if its only divisors in H are 1 and itself. Prove that 9, 21, 33 and 77 are all irreducible elements of H.
c. Show that unique factorization into irreducibles fails in H by finding two such factorizations of 693.

[^0]
[^0]: ${ }^{1}$ These are the analogues of primes in \mathbb{N}.

