P

Partial Differential Equations Spring 2014

Assignment 12.1 Due April 15

Exercise 1. Textbook exercise 4.3.1 (no plot required)

Exercise 2. Textbook exercise 4.3.2 (submit Maple animation throughout TLEARN)

Exercise 3. Textbook exercise 4.3.5 (no plot required)

For R > 0 define

$$\delta_R(x,y) = \begin{cases} \frac{1}{\pi R^2} & \text{if } x^2 + y^2 \le R, \\ 0 & \text{otherwise.} \end{cases}$$

The *Dirac delta function* is defined to be the formal limit 1

$$\delta(x,y) = \lim_{R \to 0+} \delta_R(x,y).$$

Physically, the delta function represents a point impulse at (0,0). According to its definition, for any (continuous) function f(x, y) and any region $\Omega \subset \mathbb{R}^2$ containing (0,0) in its interior, we have

$$\iint_{\Omega} \delta(x,y) f(x,y) \, dA = \lim_{R \to 0^+} \frac{1}{\pi R^2} \iint_{x^2 + y^2 \le R} f(x,y) \, dA = f(0,0),$$

since the quantity inside the limit is the average value of f over the disk $x^2 + y^2 \leq R$. To move the delta function's impulse to another point (a, b), we use the function $\delta_{(a,b)}(x, y) = \delta(x-a, y-b)$. A quick change of variables shows that this translated delta function satisfies

$$\iint_{\Omega} \delta_{(a,b)}(x,y) f(x,y) \, dA = f(a,b). \tag{1}$$

for any region $\Omega \subset \mathbb{R}^2$ containing (a, b) in its interior.

Exercise 4. Solve the vibrating membrane problem if a = c = 1, f(x, y) = 0 and $g(x, y) = \delta_{(b,0)}(x, y)$, where 0 < b < a. [*Note:* Formula (1) should make computing the Fourier-Bessel coefficients of the solution very easy.]

Exercise 5. Textbook exercise 6.1.6

Exercise 6. Textbook exercise 6.1.15

¹This limit is formal only, since it "evaluates" to 0 for $(x, y) \neq (0, 0)$ and ∞ for (x, y) = (0, 0).