P

Partial Differential Equations Spring 2014

Assignment 4.1 Due February 13

Exercise 1. Textbook exercise 2.1.15

Exercise 2. Textbook exercises 2.2.1–2.2.4

Exercise 3. Let

$$\begin{aligned} \mathbf{b}_1 &= (1, 1, 0, 1), \\ \mathbf{b}_2 &= (-1, 3, 1, -2), \\ \mathbf{b}_3 &= (-1, 0, 1, 1), \\ \mathbf{b}_4 &= (-2, 1, -3, 1). \end{aligned}$$

- **a.** Show that the vectors $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ and \mathbf{b}_4 form an orthogonal basis for \mathbb{R}^4 .
- **b.** Let $\mathbf{x} = (1, -2, 3, -4)$. Express \mathbf{x} as a linear combination of $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4$.
- c. Repeat part b for the vector $\mathbf{y} = (2, 1, 0, 3)$.
- **d.** Repeat part **b** for the vector $\mathbf{z} = (a, b, c, d)$.

Exercise 4. Let $p_0(x) = 1$, $p_1(x) = x$, $p_2(x) = 3x^2 - 1$ and $p_3(x) = 5x^3 - 3x$.

- **a.** Show that p_0 , p_1 , p_2 and p_3 are pairwise orthogonal on the interval [-1, 1].
- **b.** Which of p_0 , p_1 , p_2 and p_3 remain orthogonal on the interval [0, 1]?
- c. Because they are orthogonal on [-1, 1], the polynomials p_0, p_1, p_2 and p_3 form a basis for the vector space of all polynomials of degree ≤ 3 . Express $p(x) = x^3 + x + 1$ as a linear combination of p_0, p_1, p_2 and p_3 . [Suggestion: Emulate the inner product procedure used for vectors.]
- **d.** Repeat part **c** for the polynomial $q(x) = x^3 2$.

Exercise 5. Show that for $m, n \in \mathbb{N}$, on the interval $[-\pi, \pi]$ one has

$$\langle \sin(mx), \sin(nx) \rangle = \begin{cases} 0 & \text{if } m \neq n, \\ \pi & \text{if } m = n. \end{cases}$$