Exercise 1. Textbook exercise 2.1.15

Exercise 2. Textbook exercises 2.2.1-2.2.4

Exercise 3. Let

$$
\begin{aligned}
& \mathbf{b}_{1}=(1,1,0,1), \\
& \mathbf{b}_{2}=(-1,3,1,-2), \\
& \mathbf{b}_{3}=(-1,0,1,1), \\
& \mathbf{b}_{4}=(-2,1,-3,1) .
\end{aligned}
$$

a. Show that the vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ and \mathbf{b}_{4} form an orthogonal basis for \mathbb{R}^{4}.
b. Let $\mathbf{x}=(1,-2,3,-4)$. Express \mathbf{x} as a linear combination of $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}$.
c. Repeat part \mathbf{b} for the vector $\mathbf{y}=(2,1,0,3)$.
d. Repeat part \mathbf{b} for the vector $\mathbf{z}=(a, b, c, d)$.

Exercise 4. Let $p_{0}(x)=1, p_{1}(x)=x, p_{2}(x)=3 x^{2}-1$ and $p_{3}(x)=5 x^{3}-3 x$.
a. Show that p_{0}, p_{1}, p_{2} and p_{3} are pairwise orthogonal on the interval $[-1,1]$.
b. Which of p_{0}, p_{1}, p_{2} and p_{3} remain orthogonal on the interval $[0,1]$?
c. Because they are orthogonal on $[-1,1]$, the polynomials p_{0}, p_{1}, p_{2} and p_{3} form a basis for the vector space of all polynomials of degree ≤ 3. Express $p(x)=x^{3}+x+1$ as a linear combination of p_{0}, p_{1}, p_{2} and p_{3}. [Suggestion: Emulate the inner product procedure used for vectors.]
d. Repeat part \mathbf{c} for the polynomial $q(x)=x^{3}-2$.

Exercise 5. Show that for $m, n \in \mathbb{N}$, on the interval $[-\pi, \pi]$ one has

$$
\langle\sin (m x), \sin (n x)\rangle= \begin{cases}0 & \text { if } m \neq n \\ \pi & \text { if } m=n\end{cases}
$$

