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The 1-D wave equation revisited

Recall: The one-dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2
(1)

models the motion of an (ideal) string under tension.

Last time we saw that:

Theorem

The general solution to the wave equation (1) is

u(x , t) = F (x + ct) + G (x − ct),

where F and G are arbitrary (differentiable) functions of one
variable.
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Remarks:

The solution is uniquely determined by the initial conditions

u(x , 0) = f (x), (2)

ut(x , 0) = g(x). (3)

The domain of u(x , t) is

R = R× [0,∞).

The function u(x , t) satisfies:

∗ utt = c2uxx on the interior of R ;

∗ conditions (2) and (3) on the boundary of R .

This is an example of a boundary value problem.
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The solution surface and its domain
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An additional boundary condition

We now assume that the vibrating string has finite length L, and is
fixed at both ends.

The boundary value problem we now need to consider is

∂2u

∂t2
= c2

∂2u

∂x2
,

u(0, t) = u(L, t) = 0,

u(x , 0) = f (x),

ut(x , 0) = g(x),

on the domain
R = [0, L] × [0,∞).
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The solution surface and its domain
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D’Alembert’s solution of the vibrating string problem

We now turn to the solution of the (finite) vibrating string problem.

We would like to apply the general solution

u(x , t) = F (x + ct) + G (x − ct).

Problem: The initial conditions u(x , 0) = f (x) and
ut(x , 0) = g(x) only apply for

0 ≤ x ≤ L,

i.e. along the length of the string. But determining F and G
requires initial data for all x ∈ R.

Idea: Extend f and g (in some particular way) to all of R.
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Periodic extensions

Given a function h(x) with domain [0, L] we first extend it to an
odd function h1(x) on [−L, L] by reflecting its graph through the
origin:

Symbolically:

h1(x) =







h(x) if 0 < x ≤ L,

0 if x = 0,

−h(−x) if − L ≤ x < 0.
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We then extend h1(x) to a function h∗(x) on all of R by
repeatedly “cutting and pasting” its graph:

This is called the 2L-periodic odd extension of h(x). Symbolically:

h∗(x) = h1

(

x − 2L

[
x + L

2L

])

,

where [·] is the floor function.
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Back to the vibrating string

Goal: Solve the wave equation
∂2u

∂t2
= c2

∂2u

∂x2
on the domain

[0, L] × [0,∞), subject to the boundary conditions

u(0, t) = u(L, t) = 0,

u(x , 0) = f (x), ut(x , 0) = g(x).

Solution: We first use the 2L-periodic extensions of f and g and
solve the boundary value problem

∂2u

∂t2
= c2

∂2u

∂x2
,

u(x , 0) = f ∗(x), ut(x , 0) = g∗(x),

on R× [0,∞). Then we show that for 0 ≤ x ≤ L, this u(x , t)
solves the vibrating string problem.
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For 0 ≤ x ≤ L, we immediately have

u(x , 0) = f ∗(x) = f (x),

ut(x , 0) = g∗(x) = g(x).

To verify the other boundary conditions, we write

u(x , t) = F (x + ct) + G (x − ct)

and solve for F and G . We find that

f ∗(x) = u(x , 0) = F (x) + G (x),

(f ∗)′(x) = F ′(x) + G ′(x),

g∗(x) = ut(x , 0) = cF ′(x)− cG ′(x).
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The last two equations are equivalent to

(
1 1
c −c

)(
F ′

G ′

)

=

(
(f ∗)′

g∗

)

.

Matrix inversion gives

(
F ′

G ′

)

=
−1

2c

(
−c −1
−c 1

)(
(f ∗)′

g∗

)

=








(f ∗)′

2
+

g∗

2c

(f ∗)′

2
−

g∗

2c








Therefore, by FTOC,

F (x + ct)− F (0) =

∫
x+ct

0

F ′(s) ds =

∫
x+ct

0

(f ∗)′(s)

2
+

g∗(s)

2c
ds

=
1

2
(f ∗(x + ct)− f ∗(0)) +

1

2c

∫
x+ct

0

g∗(s) ds.
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Likewise, one can show

G (x − ct)− G (0) =
1

2
(f ∗(x − ct)− f ∗(0)) −

1

2c

∫
x−ct

0

g∗(s) ds

=
1

2
(f ∗(x − ct)− f ∗(0)) +

1

2c

∫ 0

x−ct

g∗(s) ds.

Since f ∗(0) = 0 and f ∗(x) = F (x) + G (x), it now follows that

u(x , t) = F (x + ct) + G (x − ct)

= F (0) + G (0) +
f ∗(x + ct) + f ∗(x − ct)

2
+

1

2c

∫
x+ct

x−ct

g∗(s) ds

=
f ∗(x + ct) + f ∗(x − ct)

2
+

1

2c

∫
x+ct

x−ct

g∗(s) ds.
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It remains to show that u(0, t) = u(L, t) = 0 for all t > 0.

Setting x = 0 in the expression above yields

u(0, t) =
f ∗(ct) + f ∗(−ct)

2
+

1

2c

∫
ct

−ct

g∗(s) ds = 0

since f ∗ and g∗ are both odd functions.

Setting x = L we get

u(L, t) =
f ∗(L+ ct) + f ∗(L− ct)

2
︸ ︷︷ ︸

A

+
1

2c

∫
L+ct

L−ct

g∗(s) ds

︸ ︷︷ ︸

B

.

Because f ∗ and g∗ are both 2L-periodic and odd, one can show
that A = B = 0 (HW), which finishes our work.
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Summary

Theorem (D’Alembert)

The solution of the vibrating string problem

∂2u

∂t2
= c2

∂2u

∂x2
,

u(0, t) = u(L, t) = 0,

u(x , 0) = f (x), ut(x , 0) = g(x).

on the domain [0, L] × [0,∞) is given by

u(x , t) =
f ∗(x + ct) + f ∗(x − ct)

2
+

1

2c

∫
x+ct

x−ct

g∗(s) ds,

where f ∗ and g∗ are the 2L-periodic odd extensions of f and g.

Remark: One can show that, in fact, this solution is unique.
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Remarks

When g ≡ 0, the solution consists of two superimposed
traveling waves, both with the same initial shape, moving in
opposite directions.

In general, if G (x) is an antiderivative of g∗(x), then

∫
x+ct

x−ct

g∗(s) ds = G (x + ct)− G (x − ct)

so that

u(x , t) =

(
f ∗(x + ct)

2
+

G (x + ct)

2c

)

+

(
f ∗(x − ct)

2
−

G (x − ct)

2c

)

,

i.e. u(x , t) is a superposition of two different oppositely
moving traveling waves.
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Example

Show that the solution to the vibrating string problem is periodic
in time, with period 2L/c. That is, show that if u(x , t) is a
solution, then

u(x , t + 2L/c) = u(x , t).

First, if a function h has period 2L, we have

h(x ± c(t + 2L/c)) = h(x ± ct ± 2L) = h(x ± ct),

which shows that h(x ± ct) has period 2L/c in t.

The solution u(x , t) is built of functions of the form h(x ± ct),
with h = f ∗,G .

So, it suffices to show that f ∗ and G have period 2L.
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By definition, f ∗ has period 2L.

According to the FTOC

G (x + 2L) − G (x) =

∫
x+2L

x

g∗(s) ds =

∫
L

−L

g∗(s) ds = 0,

since g∗ is 2L-periodic and odd. This shows

G (x + 2L) = G (x),

which is what we wanted to show.

Remark: The fact that G (x) is 2L-periodic is independently useful.
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Example

Solve the vibrating string problem with L = c = 1, f (x) = x(1− x)
and g(x) = 1− x.

We first find f ∗(x). The odd extension of f to [−1, 1] is

f1(x) =







x(x + 1) if − 1 ≤ x < 0,

0 if x = 0,

x(x − 1) if 0 < x ≤ 1.

Hence

f ∗(x) = f1

(

x − 2

[
x + 1

2

])

.
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The odd extension of g to [−1, 1] is

g1(x) =







−1− x if − 1 ≤ x < 0,

0 if x = 0,

1− x if 0 < x ≤ 1.

.

Now we need an antiderivative of g1. For x ∈ [−1, 0] we have

G1(x) =

∫
x

−1

g1(s) ds =

∫
x

−1

−1− s ds = −
x2

2
− x −

1

2
,

and for x ∈ [0, 1] we have

G1(x) =

∫
x

−1

g1(s) ds =

∫ 0

−1

g1(s) ds+

∫
x

0

1− s ds = −
x2

2
+x−

1

2
.
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The function G is then the 2-periodic extension of G1:

G (x) = G1

(

x − 2

[
x + 1

2

])

.

Here are the graphs of g∗ (in blue) and G (in red):

Since c = 1, the solution is then

u(x , t) =
f ∗(x + t) + G (x + t)

2
+

f ∗(x − t)− G (x − t)

2
.
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Example

A string with L = 2 and c = 3 is given the initial shape

f (x) =

{

0 if 0 ≤ x ≤ 1,

(x − 1)(2− x) if 1 < x ≤ 2

and is released with zero initial velocity. How long does it take
before the point x = 1

5
begins to vibrate?

First, let’s look at the graph of f ∗(x).
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Since g ≡ 0, the solution u(x , t) is a superposition two copies of
f ∗, one moving left, the other right, with speed c = 3.

The graph shows that the left-moving copy reaches x = 1
5
first.

The vibration must move 1− 1
5
= 4

5
of a unit to reach x = 1

5
.

Thus, the amount of time it takes for this to happen is

t =
4/5

3
=

4

15
.
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