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Linear differential operators

Definition: A linear differential operator (in the variables
x1, x2, . . . xn) is a sum of terms of the form

A(x1, x2, . . . , xn)
∂a1+a2+···+an

∂xa11 ∂xa22 · · · ∂xann
,

where each ai ≥ 0.

Examples: The following are linear differential operators.

1. The Laplacian:

∇2 =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n

2. W = c2∇2 − ∂2

∂t2
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3. H = c2∇2 − ∂

∂t

4. T =
∂

∂t
− v1

∂

∂x1
− v2

∂

∂x2
− · · · − vn

∂

∂xn
=

∂

∂t
− v · ∇

5. The general first order linear operator (in two variables):

D1 = A(x , y)
∂

∂x
+ B(x , y)

∂

∂y
+ C (x , y)

6. The general second order linear operator (in two variables):

D2 = A(x , y)
∂2

∂x2
+ 2B(x , y)

∂2

∂x∂y
+ C (x , y)

∂2

∂y2

+ D(x , y)
∂

∂x
+ E (x , y)

∂

∂y
+ F (x , y)
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Theorem

If D is a linear differential operator (in the variables x1, x2, · · · xn),
u1 and u2 are functions (in the same variables), and c1 and c2 are
constants, then

D(c1u1 + c2u2) = c1Du1 + c2Du2.

Remarks:

This follows immediately from the fact that each partial
derivative making up L has this property, e.g.

∂3

∂x21∂x2
(c1u1 + c2u2) = c1

∂3u1
∂x21∂x2

+ c2
∂3u2

∂x21∂x2
.

This property extends (in the obvious way) to any number of
functions and constants.

Daileda Superposition



Linear PDEs

Definition: A linear PDE (in the variables x1, x2, · · · , xn) has the
form

Du = f (1)

where:

D is a linear differential operator (in x1, x2, · · · , xn),

f is a function (of x1, x2, · · · , xn).

We say that (1) is homogeneous if f ≡ 0.

Examples: The following are examples of linear PDEs.

1. The Lapace equation: ∇2u = 0 (homogeneous)

2. The wave equation: c2∇2u − ∂2u

∂t2
= 0 (homogeneous)
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3. The heat equation: c2∇2u − ∂u

∂t
= 0 (homogeneous)

4. The Poisson equation: ∇2u = f (x1, x2, . . . , xn)
(inhomogeneous if f 6≡ 0)

5. The advection equation:
∂u

∂t
+ κ

∂u

∂x
+ ru = k(x , t)

(inhomogeneous if k 6≡ 0)

6. The telegraph equation:
∂2u

∂t2
+ 2B

∂u

∂t
− c2

∂2u

∂x2
+ Au = 0

(homogeneous)

Non-examples: The following are non-linear PDEs (why?).

1. The Liouville equation: ∇2u + eλu = 0

2. The KdV equation:
∂u

∂t
+

∂3u

∂x3
− 6u

∂u

∂x
= 0
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Linear boundary conditions

A boundary value problem (BVP) consists of:

a domain Ω ⊆ R
n,

a PDE (in n independent variables) to be solved in the interior
of Ω,

a collection of boundary conditions to be satisfied on the
boundary of Ω.

The data for a BVP:

Ω

PDE

Boundary 

conditions
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Definition: Let Ω ⊆ R
n be the domain of a BVP and let A be a

subset of the boundary of Ω.

We say that a boundary condition on A is linear if it has the form

Du|A = f |A (2)

where:

D is a linear differential operator (in x1, x2, · · · , xn),

f is a function (of x1, x2, · · · , xn).

(The notation ·|A means “restricted to A.”) We say that (2) is
homogeneous if f ≡ 0.
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Examples: The following are linear boundary conditions.

1. Dirichlet conditions: u|A = f |A, such as

u(x , 0) = f (x) for 0 < x < L, or u(L, t) = 0 for t > 0

2. Neumann conditions:
∂u

∂n

∣

∣

∣

∣

A

= f |A, where
∂u

∂n
is the

directional derivative perpendicular to A, such as

ut(x , 0) = g(x) for 0 < x < L, or ux(0, t) = 0 for t > 0

3. Robin conditions: u + a
∂u

∂n

∣

∣

∣

∣

A

= f |A, such as

u(L, t) + ux(L, t) = 0 for t > 0
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The principle of superposition

Theorem

Let D be a linear differential operator (in the variables
x1, x2, . . . , xn), let f1 and f2 be functions (in the same variables),
and let c1 and c2 be constants.

If u1 solves the linear PDE Du = f1 and u2 solves Du = f2,
then u = c1u1 + c2u2 solves Du = c1f1 + c2f2. In particular, if
u1 and u2 both solve the same homogeneous linear PDE, so
does u = c1u1 + c2u2.

If u1 satisfies the linear boundary condition Du|A = f1|A and
u2 satisfies Du|A = f2|A, then u = c1u1 + c2u2 satisfies
Du|A = c1f1 + c2f2|A. In particular, if u1 and u2 both satisfy
the same homogeneous linear boundary condition, so does
u = c1u1 + c2u2.
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Remarks

The superposition principle:

Holds because of the linearity of D, e.g. if Du1 = f1 and
Du2 = f2, then

D(c1u1 + c2u2) = c1Du1 + c2Du2 = c1f1 + c2f2.

Extends (in the obvious way) to any number of functions and
constants.

Says that linear combinations of solutions to a linear PDE
yield more solutions.

Says that linear combinations of functions satisfying linear
boundary conditions yield functions that satisfy the
corresponding combination of boundary conditions.
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Example

Consider the boundary value problem

uxx + uyy = 0, y > 0,

u(x , 0) = 0, −∞ < x < ∞.

The functions

u1(x , y) = cos(x)(ey − e−y ),

u2(x , y) = sin(y)(ex + e−x)

are both solutions.
Since the PDE and boundary conditions are both linear and
homogeneous,

u = c1u1 + c2u2 = c1 cos(x)(e
y − e−y ) + c2 sin(y)(e

x + e−x)

solve the same problem, for any constants c1 and c2.
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Example

Consider the vibrating string problem with initial data

u(x , 0) = sin
(πx

L

)

, ut(x , 0) = 0, 0 ≤ x ≤ L.

One can easily check that

u1(x , t) = sin
(πx

L

)

cos
(cπt

L

)

is a solution to this problem. If we change the initial conditions to

u(x , 0) = 0, ut(x , 0) = sin
(πx

L

)

, 0 ≤ x ≤ L,

then

u2(x , t) =
L

cπ
sin

(πx

L

)

sin
(cπt

L

)

is a solution.
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Since the wave equation and all of the boundary conditions in the
vibrating string problem are linear, it follows immediately that

u = 2u1 − u2 = sin
(πx

L

)

(

2 cos
(cπt

L

)

− L

cπ
sin

(cπt

L

)

)

solves the vibrating string problem with the initial conditions

u(x , 0) = 2 sin
(πx

L

)

, ut(x , 0) = − sin
(πx

L

)

.
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Non-example

Warning: The principle of superposition can easily fail for
nonlinear PDEs or boundary conditions.

Consider the nonlinear PDE

ux + u2uy = 0.

One solution of this PDE is

u1(x , y) =
−1 +

√
1 + 4xy

2x
.

However, the function u = cu1 does not solve the same PDE
unless c = 0,±1.
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Example

More generally, for n = 1, 2, 3, . . . the functions

un(x , t) = sin
(nπct

L

)

sin
(nπx

L

)

,

vn(x , t) = cos
(nπct

L

)

sin
(nπx

L

)

,

solve the vibrating string problem with initial conditions

un(x , 0) = 0,

(un)t(x , 0) =
nπc

L
sin

(nπx

L

)

,

vn(x , 0) = sin
(nπx

L

)

,

(vn)t(x , 0) = 0.
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By the principle of superposition, it follows that the function

u(x , t) =

∞
∑

n=1

an sin
(nπct

L

)

sin
(nπx

L

)

+ bn cos
(nπct

L

)

sin
(nπx

L

)

=

∞
∑

n=1

(

an sin
(nπct

L

)

+ bn cos
(nπct

L

))

sin
(nπx

L

)

solves the vibrating string problem with initial conditions

u(x , 0) =
∞
∑

n=1

bn sin
(nπx

L

)

,

ut(x , 0) =

∞
∑

n=1

an
nπc

L
sin

(nπx

L

)

.
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The moral

One can solve the vibrating string problem with initial conditions

u(x , 0) = f (x), ut(x , 0) = g(x), 0 ≤ x ≤ L,

provided that f (x) and g(x) can be expressed as (possibly infinite)

linear combinations of the functions sin
(nπx

L

)

, n = 1, 2, 3, . . ..

Such combinations are examples of Fourier series.

Questions:

Which functions are expressible as Fourier series?

How can we find the Fourier series expansion of a given
function?

We’ll begin to answer these questions next week!
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