More on Fourier Series

R. C. Daileda

Trinity University

Partial Differential Equations
February 11, 2014

New Fourier series from old

Recall: Given a function $f(x)$, we can dilate/translate its graph via multiplication/addition, as follows.

Geometric operation Mathematical implementation

Dilate along the x-axis by a factor of a

$$
f(x / a)
$$

Dilate along the y-axis by a factor of b

$$
b f(x)
$$

Translate (right) along the x-axis by c units

$$
f(x-c)
$$

Translate (up) along the y-axis by d units

$$
f(x)+d
$$

One has the following general principles.

Theorem

If the graph of $f(x)$ is obtained from $g(x)$ by dilations and/or translations, then the same operations can be used to obtain the Fourier series of f from that of g.

Theorem

If $f(x)$ is a linear combination of $g_{1}(x), g_{2}(x), \ldots, g_{n}(x)$, then the Fourier series of f is the same linear combination of the Fourier series of $g_{1}, g_{2}, \ldots, g_{n}$.

Remarks:

- These are both easily derived from Euler's formulas for the Fourier coefficients.
- These tell us that we can construct Fourier series of "new" functions from existing series.

Example

Use an existing series to find the Fourier series of the 2π-periodic function given by $f(x)=x$ for $0 \leq x<2 \pi$.

The graph of $f(x)$:

This function can be obtained from the earlier sawtooth wave

by translating both up and to the right by π units.

The old sawtooth wave has Fourier series

$$
2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin (n x)}{n}
$$

so the function f has Fourier series

$$
\begin{aligned}
\pi & +2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin (n(x-\pi))}{n} \\
& =\pi+2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(\sin (n x) \cos (n \pi)-\sin (n \pi) \cos (n x)) \\
& =\pi+2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(-1)^{n}}{n} \sin (n x) \\
& =\pi-2 \sum_{n=1}^{\infty} \frac{\sin (n x)}{n}
\end{aligned}
$$

Example

Use an existing series to find the Fourier series of the 4-periodic function satisfying

$$
f(x)= \begin{cases}-x & \text { if }-1 \leq x<1 \\ x-2 & \text { if } 1 \leq x<3\end{cases}
$$

The graph of $f(x)$:

We can obtain f from the graph of an earlier 2π-periodic triangular wave.

Earlier wave:
$g(x)$

Dilation of $2 / \pi$ along both axes:

$$
\frac{2}{\pi} g\left(\frac{\pi x}{2}\right)
$$

Translation by 1 along both axes:

$$
-1+\frac{2}{\pi} g\left(\frac{\pi(x-1)}{2}\right)
$$

We already know that the Fourier series for g is

$$
\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\cos ((2 k+1) x)}{(2 k+1)^{2}}
$$

We simply transform it as above, and simplify.

This yields

$$
-1+\frac{2}{\pi}\left(\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\cos ((2 k+1) \pi(x-1) / 2)}{(2 k+1)^{2}}\right)
$$

The cosine term inside the sum is

$$
\begin{aligned}
\cos \left(\frac{(2 k+1) \pi x}{2}-\frac{(2 k+1) \pi}{2}\right)= & \cos \left(\frac{(2 k+1) \pi x}{2}\right) \cos \left(\frac{(2 k+1) \pi}{2}\right) \\
& +\sin \left(\frac{(2 k+1) \pi x}{2}\right) \sin \left(\frac{(2 k+1) \pi}{2}\right) \\
= & (-1)^{k} \sin \left(\frac{(2 k+1) \pi x}{2}\right) .
\end{aligned}
$$

So the series simplifies to

$$
-\frac{8}{\pi^{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2}} \sin \left(\frac{(2 k+1) \pi x}{2}\right)
$$

Example

Use existing series to find the Fourier series of the 2π-periodic function satisfying

$$
f(x)= \begin{cases}0 & \text { if }-\pi \leq x<0 \\ x & \text { if } 0 \leq x<\pi\end{cases}
$$

The graph of $f(x)$ (left) is the average of the sawtooth and triangular waves shown.

So, the Fourier series of f is the average of our two previous series:

$$
\begin{aligned}
& \frac{1}{2}\left(2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n x)+\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\cos ((2 k+1) x)}{(2 k+1)^{2}}\right) \\
= & \frac{\pi}{4}-\frac{2}{\pi} \sum_{k=0}^{\infty} \frac{\cos ((2 k+1) x)}{(2 k+1)^{2}}+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n x) .
\end{aligned}
$$

We could combine these into one series, but it's easier to just leave the cosine and sine series separate.

Differentiating Fourier series

Term-by-term differentiation of a series can be a useful operation, when it is valid. The following result tells us when this is the case with Fourier series.

Theorem

Suppose f is 2π-periodic and piecewise smooth. If f^{\prime} is also piecewise smooth, and f is continuous everywhere, then the Fourier series for f^{\prime} can be obtained from that of f using term-by-term differentiation.

Remark: This can be proven by using integration by parts in the Euler formulas for the Fourier coefficients of f^{\prime}.

Example

Use an existing series to find the Fourier series of the 2π-periodic function satisfying

$$
f(x)= \begin{cases}-1 & \text { if }-\pi \leq x<0 \\ 1 & \text { if } 0 \leq x<\pi\end{cases}
$$

The graph of $f(x)$ (a square wave)

shows that it is the derivative of the triangular wave.

Since the triangular wave is continuous everywhere, we can differentiate its Fourier series term-by-term to get the series for the square wave.

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\cos ((2 k+1) x)}{(2 k+1)^{2}}\right) & =-\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{-(2 k+1) \sin ((2 k+1) x)}{(2 k+1)^{2}} \\
& =\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\sin ((2 k+1) x)}{(2 k+1)}
\end{aligned}
$$

Warning: The hypothesis that f is continuous is extremely important. For example, if we term-wise differentiate the Fourier series for the discontinuous square wave, we get

$$
\frac{4}{\pi} \sum_{k=0}^{\infty} \cos ((2 k+1) x)
$$

which converges (almost) nowhere!

Half-range expansions

Goal: Given a function $f(x)$ defined for $0 \leq x \leq p$, write $f(x)$ as a linear combination of sines and cosines.

Idea: Extend f to have period $2 p$, and find the Fourier series of the resulting function.

Sine and cosine series

We set

$$
\begin{aligned}
& f_{o}=\text { odd } 2 p \text {-periodic extension of } f, \\
& f_{e}=\text { even } 2 p \text {-periodic extension of } f .
\end{aligned}
$$

If we expand f_{o} as a Fourier series, it will involve only sines:

$$
\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)
$$

This is the sine series expansion of f.
According to Euler's formula the Fourier coefficients are given by

$$
b_{n}=\frac{1}{p} \int_{-p}^{p} \underbrace{f_{o}(x) \sin \left(\frac{n \pi x}{p}\right)}_{\text {even }} d x=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x
$$

If we expand f_{e} as a Fourier series, it will involve only cosines:

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)
$$

This is the cosine series expansion of f.
This time Euler's formulas give

$$
\begin{aligned}
& a_{0}=\frac{1}{2 p} \int_{-p}^{p} \underbrace{f_{e}(x)}_{\text {even }} d x=\frac{1}{p} \int_{0}^{p} f(x) d x, \\
& a_{n}=\frac{1}{p} \int_{-p}^{p} \underbrace{f_{e}(x) \cos \left(\frac{n \pi x}{p}\right)}_{\text {even }} d x=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x .
\end{aligned}
$$

If f is piecewise smooth, both the sine and cosine series converge to the function $\frac{f(x+)+f(x-)}{2}$.

Example

Find the sine and cosine series expansions of $f(x)=3-x$ on the interval $0 \leq x \leq 3$.

Taking $p=3$ in our work above, the coefficients of the sine series are given by

$$
\begin{aligned}
b_{n} & =\frac{2}{3} \int_{0}^{3}(3-x) \sin \left(\frac{n \pi x}{3}\right) d x \\
& =\frac{2}{3}\left(\frac{-3(3-x)}{n \pi} \cos \left(\frac{n \pi x}{3}\right)-\left.\frac{9}{n^{2} \pi^{2}} \sin \left(\frac{n \pi x}{3}\right)\right|_{0} ^{3}\right) \\
& =\frac{2}{3} \cdot \frac{9}{n \pi} \cos (0)=\frac{6}{n \pi} .
\end{aligned}
$$

So, the sine series is

$$
\frac{6}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \left(\frac{n \pi x}{3}\right)
$$

The cosine series coefficients are

$$
a_{0}=\frac{1}{3} \int_{0}^{3} 3-x d x=\frac{1}{3}\left(3 x-\left.\frac{x^{2}}{2}\right|_{0} ^{3}\right)=\frac{3}{2}
$$

and for $n \geq 1$

$$
\begin{aligned}
a_{n} & =\frac{2}{3} \int_{0}^{3}(3-x) \cos \left(\frac{n \pi x}{3}\right) d x \\
& =\frac{2}{3}\left(\frac{3(3-x)}{n \pi} \sin \left(\frac{n \pi x}{3}\right)-\left.\frac{9}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{3}\right)\right|_{0} ^{3}\right) \\
& =\frac{2}{3}\left(-\frac{9}{n^{2} \pi^{2}} \cos (n \pi)+\frac{9}{n^{2} \pi^{2}}\right)= \begin{cases}\frac{12}{n^{2} \pi^{2}} & \text { if } n \text { is odd }, \\
0 & \text { if } n \text { is even. }\end{cases}
\end{aligned}
$$

Since we can omit the terms with even n, we write $n=2 k+1$ ($k \geq 0$) and obtain the cosine series
$a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{3}\right)=\frac{3}{2}+\frac{12}{\pi^{2}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}} \cos \left(\frac{(2 k+1) \pi x}{3}\right)$.
Here are the graphs of f, f_{o} and f_{e} (over one period):

Consequently, the sine series equals $f(x)$ for $0<x \leq 3$, and the cosine series equals $f(x)$ for $0 \leq x \leq 3$.

