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The vibrating string ... again!

Recall: The motion of an ideal string of length L can be modeled
by the PDE
Upr = CP sy (0<x< L, t>0),

subject to the boundary and initial conditions

u(0,t) = u(L,t)=0 (t>0),
u(x,0) = f(x),
ue(x,0) = g(x) (0 < x < L).

Remarks:

@ Previously: we expressed u(x,t) in terms of periodic
extensions via d'Alembert’'s method.

@ Now: we will express u(x, t) as a series using the principle of
superposition.

Daileda 1-D Wave Equation Redux



Separation of Variables

Separation of variables

We seek “simple” solutions of the form
u(x, t) = X(x)T(t).
Differentiating yields
ug = XT", uee = X"T.
Plugging into the wave equation gives XT" = c2X" T, or

. " 1 .
function X T function

of x only X 2T oot only

Since x and t are independent, both sides must be constant.
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Separation of Variables

We introduce the separation constant k:

X// T//
D k=
X 2T

This yields two ODEs in X and T:
X"—kX =0, T" —ke®T = 0.
Imposing the boundary conditions we find that

0=u(0,t) = X(0)T(t) = X(0) =0,
0=u(L t)=X(L)T(t) = X(L)=0.

This gives us a boundary value problem in X:

X" — kX =0, X(0) = X(L) = 0. (1)
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Separation of Variables

Solving for X

We now determine the values of k for which (1) has nontrivial
solutions.

Case 1: k = ;1?> > 0. We need to solve X” — i?X = 0. The
characteristic equation is

r2—,u2:0 = r==u,

which gives the general solution X = ¢cie** + ;e ™#*. The
boundary conditions tell us that

_ L —pl __
a1+ o =ce' + e =0,

or in matrix form

(oo ) (2)-(0)

Daileda 1-D Wave Equation Redux



Separation of Variables

The determinant here is e *t — el -£ 0, which means that
c1 = ¢ = 0. So the only solution to the BVP in this case is X = 0.

Case 2: k = 0. We need to solve X" = 0. Integrating twice gives
X =cx+ o.

The boundary conditions give ¢ = ¢c1L + ¢ = 0, which imply that
c1 = ¢ =0, and hence X = 0 again.

Case 3: k = —u? < 0. We need to solve X” 4+ 12X = 0. The
characteristic equation is

P+p?=0 = r=+iy,

which gives the general solution X = ¢ cos(ux) + ¢ sin(ux).
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Separation of Variables

The boundary conditions tell us that
a1 = cpcos(ul) + csin(ul) = 0.

We will have nontrivial solutions iff sin(L) = 0. This happens iff

ul € w7, or
nm
= Hn=" ne€Z.

Choosing c; = 1 for convenience, we obtain the solutions

X = X, = sin(pupx) = sin (nLLX> , neN.

Remarks:

@ We can omit n < 0 since they just yield multiples of these
solutions.

@ Up to the choice of the constant, these are the only nontrivial
solutions to the BVP for X.
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Separation of Variables

Solving for T

Having determined the X portion of our separated solution, we
now turn to T.

Given any n € N, the separation constant in Case 3 is k = —p2.
So T solves T" — kc®T = T" + (nc)?>T = 0. The characteristic
equation is

P4 (unc)> =0 = r=iu,c,

which gives the general solution
T = T, = bpcos (nct)+ by sin (unct) = by cos(Apt)+ by, sin(Ant),

where:

® b, and b}, are arbitrary constants;
nm

° )\,,:u,,C:cT.
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Separation of Variables

The normal modes

Putting the two factors together we obtain the normal modes of
the wave equation (for n € N)

un(x,t) = Xu(x) Tp(t) = sin(unx) (bp cos(Ant) + by sin(Apt)) .

Remarks:

@ The nth normal mode:
* is spatially 27/, = 2L/n-periodic;
* is temporally 27 /\, = 2L/nc-periodic.
@ As n increases, the normal modes oscillate more rapidly (in
space and time).

@ Up to a scalar multiple and a phase shift (in time) the modes
are all of the form sin(u,x) cos(Apt).
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Superposition

Superposition

Recall: The wave equation and the fixed-endpoint conditions are
linear and homogeneous.

Thus, the principle of superposition ensures that

u(x,t) = un(x,t) = Y _sin(nx) (bn cos(Ant) + b sin(Ant))
n=1 n=1
solves the vibrating string problem.
Remarks:

@ Because it is a common period for each summand, we see
that 2L/c is a temporal period for this solution.

@ Although this solves the wave equation and has fixed
endpoints, we have yet to impose the initial conditions.
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Superposition

Initial conditions

We now use the initial conditions to determine {b,} and {b}}.

Setting t = 0 yields

f(x) = u(x,0) = Zb sin(funx) ib" sin (nLLX) ,
n=1

which is the 2L-periodic sine expansion of f(x). Hence

2 t ./ nTX
b, = Z/o f(x)sin (T) dx.
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Superposition

Now differentiate with respect to t and set t = O:

g(x) = u(x,0) = Z/\ by sin(pnx) = z_:)\,,b: sin (nLLX) .

This is the 2L-periodic sine expansion of g(x). Hence

2 L
Anb; = Z/o g(x)sin (nLLX> dx,

or, since A\, = nmc/L:
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Theorem (Series solution to the vibrating string problem)

The solution of the boundary value problem

Upt = C2 Uy (0<x< L, t>0),

u(0,t) =u(L,t)=0 (t>0),

u(x,0) = f(x), ue(x,0) = g(x) (0<x<L)
is given by

u(x, t) = Z sin(nx) (bn cos(Ant) + by sin(Ant))

n=1

nmw
where i, = T An = upc and

2 [t . [ NTX . 2 L . [ NTX
bn = Z/Ov f(X)Sln (T) dX, bn = % . g(X)SIn (T) dx.
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Superposition

Remarks

@ Note that the initial shape and velocity influence the solution
independently. In particular:
« If f(x) =0, then b, =0 for all n.
« If g(x) =0, then b} = 0 for all n.
@ The solution can also be written as

u(x,t) = Z b sin(nx) cos(Ant) + Z by sin(punx) sin(Ant).
n=1 n=1

@ Note that
b, = (nth 2L-periodic sine series coeff. of f),

1
by = — (nth 2L-periodic sine series coeff. of g).
n
So, if the sine series of f or g are known, we need not use the
integral formulae.
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Example

Solve the vibrating string problem
Uge = 100U, (0<x<2 t>0),
u(0,t) =u(2,t) =0 (t>0),
X if0 < 1
ux0)=42 =X
1-— % ifl<x<2,
ut(x,0) = 0.

We have L =2, ¢ =10 and b}, = 0 for all n. Here's the initial
shape (f(x)):
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Examples

According to exercise 2.4.17b (with p=L =2, a=1 and
h=1/2):

f(x) = % i Si”(Z;T/Q) .in (n7TX> o b= 4sin(n7r/2)‘
n=1

2 m2n2

We therefore have

u(x,t) = Z by sin(funx) cos(Ant)

n=1

_ % Z sin(zz/Q) sin (ngx) cos(5nt), (A)
n=1

since pu, = nm/2 and A\, = ppc = 5nm.
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Examples

Suppose that in the preceding problem we instead require that
ut(x,0) =1 for 0 < x < 2. Find u(x, t) in this case.

We only need to find b} and add to our earlier work.

By exercise 2.3.1, the 4-periodic sine series for g(x) =1 is

%i BRI <(2k—|—21)7rx>‘

k=0

Note only odd indexed modes occur. Therefore

Yorrtbien = i D)

4 4
N )\2k+1(2k + 1)71' N 5(2k + 1)271'2 '

Daileda 1-D Wave Equation Redux



Examples

It follows that the b} portion of the solution is

Z b sin (ppx)sin (Apt) =

n=1

SLZ: TRy <(2k+21)”>sin(5(2k+1)m). (B)

The overall solution is the sum of this and our previous answer:

u(x,t) = (A) +(B).
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