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The heat equation

Introduction

Goal: Model heat flow in a one-dimensional object (thin rod).

Set up: Place rod of length L along x-axis, one end at origin:

0 L
Apheated rod

Let u(x, t) = temperature in rod at position x, time t.

X

(Ideal) Assumptions:

@ Rod is given some initial temperature distribution f(x) along
its length.

@ Rod is perfectly insulated, i.e. heat only moves horizontally.

@ No internal heat sources or sinks.
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The heat equation

The Heat Equation

One can show that u satisfies the one-dimensional heat equation
ug = C2UXX.

Remarks:

@ This can be derived via conservation of energy and Fourier's
law of heat conduction (see textbook pp. 143-144).

@ The constant ¢? is the thermal diffusivity:

Ko = thermal conductivity,
K .
2= —0, s = specific heat,
sp
p = density.
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The heat equation

Initial and Boundary Conditions

To completely determine u we must also specify:

Initial conditions: The initial temperature profile
u(x,0) = f(x) for 0 < x < L.

Boundary conditions: Specific behavior at xg = 0, L:

1. Constant temperature: u(xp,t) = T for t > 0.
2. Insulated end: uy(xp,t) =0 for t > 0.

3. Radiating end: uy(xp,t) = Au(xo, t) for t > 0.
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Homogeneous Dirichlet conditions

Solving the Heat Equation

Case 1: homogeneous Dirichlet boundary conditions

We now apply separation of variables to the heat problem

Ur = C Uy (0<x<L, t>0),
u(0,t) = u(L,t)=0 (t>0),
u(x,0) = f(x) (0 < x < L).
We seek separated solutions of the form u(x,t) = X(x)T(t). In
this case
— XT/ ;- > Xl/ B T/ B
UXX:X”T}: XT'=cX'T = Y—ﬁ—

Together with the boundary conditions we obtain the system

X" — kX =0, X(0)=X(L)=0,
T — ?kT =0.
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Homogeneous Dirichlet conditions

Already know: up to constant multiples, the only solutions to the
BVP in X are

nmy 2
k=i ==(T)"
nmwx

X = X, = sin (ppx) = sin (T), neN.

Therefore T must satisfy
2
T — kT = T + (C”T”) T=0
——
An
T'=-XT = T=T,=bye
We thus have the normal modes of the heat equation:

un(x, t) = Xn(x) Tn(t) = bpe 7t sin(unx), n e N.
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Homogeneous Dirichlet conditions

Superposition and initial condition

Applying the principle of superposition gives the general solution

o0 o )
= Z up(x,t) = Z bne™*t sin(ppx).
n=1 n=1

If we now impose our initial condition we find that

f(x) = u(x,0) Zb sm(mTX)

which is the sine series expansion of f(x). Hence

2 L
b, = z/o f(x)sin (nLLX) dx.
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Homogeneous Dirichlet conditions

Remarks

@ As before, if the sine series of f(x) is already known, solution
can be built by simply including exponential factors.

@ One can show that this is the only solution to the heat
equation with the given initial condition.

@ Because of the decaying exponential factors:

* The normal modes tend to zero (exponentially) as t — oco.
« Overall, u(x, t) — 0 (exponentially) uniformly in x as t — .

* As c increases, u(x, t) — 0 more rapidly.

This agrees with intuition.
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Homogeneous Dirichlet conditions

Solve the heat problem

U = Uy (0<x<2 t>D0),
u(0,t) = u(2,t) = (t>0),
u(x,0) =50 (0 < x<2).

We have ¢ = /3, L = 2 and, by exercise 2.3.1 (with p = L = 2)

o0

200 1 ((2k+1)mx
f = = — .
() =50=— Zk_o 2k+1" < 2 )

2k +1 2k +1
Since Apxi1 = ( Z_ ) = \/5( 2+ )F, we obtain

_ 200 i 3(k+1)> 72t /4 i (2k + 1)mx
T~ 2k+ 1° 2 '
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Inhomogeneous Dirichlet conditions

Solving the Heat Equation

Case 2a: steady state solutions

Definition: We say that u(x, t) is a steady state solution if uy =0
(i.e. u is time-independent).

If u(x,t) is a steady state solution to the heat equation then

uy=0 = C2uXX:ut:0 = Uyw=0 = u=Ax+B.
Steady state solutions can help us deal with inhomogeneous
Dirichlet boundary conditions. Note that

U(O, t) =T B=T; T,— T,
U(L,t):T2 AL+ B=T,
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Inhomogeneous Dirichlet conditions

Solving the Heat Equation

Case 2b: inhomogeneous Dirichlet boundary conditions

Now consider the heat problem

Ur = C? Uy (0<x<L, t>0),
u(0,t) =Ty, u(L,t)=T> (t > 0),
u(x,0) = f(x) (0 < x < L).

Step 1: Let u; denote the steady state solution from above:

Step 2: Let up = u — u3.

Remark: By superposition, u; still solves the heat equation.
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Inhomogeneous Dirichlet conditions

The boundary and initial conditions satisfied by u» are

UQ(O, t) = U(O, t) — Ul(O) =T, —T1 =0,
w(L,t) =u(Ll,t) —ui(L)y =Ty — T, =0,
u2(x,0) = f(x) — u1(x).

Step 3: Solve the heat equation with homogeneous Dirichlet
boundary conditions and initial conditions above. This yields w5.

Step 4: Assemble u(x,t) = ui(x) + wa(x, t).
Remark: According to our earlier work, lim w(x,t) = 0.
t—00

@ We call uy(x, t) the transient portion of the solution.

@ We have u(x,t) — ui(x) as t — oo, i.e. the solution tends to
the steady state.
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Inhomogeneous Dirichlet conditions

Solve the heat problem.

Ur = 3y (0<x<2 t>D0),
u(0,t) =100, w(2,t)=0 (t>0),
u(x,0) =50 (0<x<2).

We have ¢ = \/§' L =2, T]_ =100, T2 =0 and f(X) = 50.
The steady state solution is

-1
= (0 2OO>X—|—100:100—50X.

The corresponding homogeneous problem for uy is thus

Uy = 3y (0<x<2 t>0),
u(0,t) =u(2,t) =0 (t>0),
u(x,0) =50 — (100 — 50x) =50(x — 1) (0 < x<2).

Daileda 1-D Heat Equation



Inhomogeneous Dirichlet conditions

According to exercise 2.3.7 (with p = L = 2), the sine series for

50(x — 1) is
—100 1 . [ 2kmx
k 2 ’

™

M

2k
i.e. only even modes occur. Since Ay, = cerm V3km,
—100 X1 442,02,
u(x, t) = - Z € sin (kmx).
k=1
Hence
100 —3Kk272¢
u(x, t) = u(x)4ua(x, t) = 100— 50x—— Z P sin (kmx).
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