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Neumann Boundary Conditions

A heat problem with Neumann boundary conditions

Goal: Solve the following heat problem:

Uy = €l (0<x<L,0<t),
ux(0,t) = ux(L,t) =0 (0 < 1),
u(x,0) = f(x) (0 < x < L).

This models the heat flow in a wire of length L with given initial
temperature distribution and insulated ends.

As before, assuming u(x, t) = X(x) T(t) yields the system
X" — kX =0, X'(0)=X'(L) =0,
T' — kT =0.

Note that the boundary conditions on X are not the same as in the
Dirichlet condition case.

[BETILLE Neumann and Robin conditions



Neumann Boundary Conditions

Solving for X

Case 1: k = pi? > 0. We need to solve X” — ;X = 0. The
characteristic equation is

rP—p?=0 = r=+yu,

which gives the general solution X = c;e* + cpe ™. The
boundary conditions tell us that

0= X'(0) = pcy — pca, 0=X'(L) = pcrett — peye™t,

or in matrix form

(e 2 (2)=(5)

Since the determinant is p?(e*t — e7#L) £ 0, we must have
c1=¢c =0,and so X =0.
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Neumann Boundary Conditions

Case 2: k = 0. We need to solve X" = 0. Integrating twice gives
X = C1X + C.

The boundary conditions give 0 = X’(0) = X’(L) = ¢1. Taking
¢ = 1 we get the solution

X =Xo=1.

Case 3: k = —u? < 0. We need to solve X” + X = 0. The
characteristic equation is

Pru?=0 = r=ip,

which gives the general solution X = ¢y cos(ux) + ¢z sin(ux).
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Neumann Boundary Conditions

The boundary conditions yield

0=X'(0) = —pcysin0+ pcpcos0=pc; = c =0,
0= X'(L) = —pcy sin(pl) + pep cos(ul) = —pey sin(ul).

In order to have X # 0, this shows that we need
. nm
sin(pl) =0 = pl=nm = P= e = (neZ).
Taking ¢; = 1 we obtain
X = Xp = cos(pnx) (n € N).

Remarks:
@ We only need n > 0, since cosine is an even function.

@ When n =0 we get Xop = cos0 = 1, which agrees with the
k = 0 result.
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Neumann Boundary Conditions

Normal modes and superposition

As before, for k = —pu2, we obtain T = T,, = a,e it
We therefore have the normal modes

Un(x, 1) = Xn(x) Ta(t) = ane Y cos(uunx) (n € Np),
where u, = nm/L and X\, = cp,,.

The principle of superposition now gives the general solution
(xt—uo+2un—ag+Zan "cos,u,,x)

to the heat equation with (homogeneous) Neumann boundary
conditions.
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Neumann Boundary Conditions

Initial conditions

If we now impose our initial condition we find that

nmx

f(x) = u(x,0) = ag +ZancosT,

n=1

which is simply the 2L-periodic cosine expansion of f(x). Hence

1t 2 [t
ao—L/ f(x) dx, a,,—L/ f(x)cos?dx7 (neN).
0 0

Remarks:
@ As before, if the cosine series of f(x) is already known, u(x, t)
can be built by simply including exponential factors.
@ Because of the exponential factors, tli)m u(x, t) = ag, which is
oo

the average initial temperature.
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Neumann Boundary Conditions
Example

Solve the following heat problem:
1
Ut:ZUxx; 0<x<1,0<t,
UX(O7 t) = ux(la t) =0, 0<t,
u(x,0) = 100x(1 — x), 0<x<1.

We have ¢ =1/2, L =1 and f(x) = 100x(1 — x). Therefore

1
50
ap = / 100x(1 — x) dx = 3
0

—200(1 + (—1)")

n>1.
n%m2

) -

1
ap = 2/ 100x(1 — x) cos nmx dx =
0
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Neumann Boundary Conditions

Example 1

Since A\, = cnm/L = n7/2, plugging everything into the general
solution we get

5 200 (1
u(x,t) = Z * ~7Tt/4 Cos nx.

As in the case of Dirichlet boundary conditions, the exponential
terms decay rapidly with t. We therefore have

50
tILrQo u(x,t) = 3
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Robin Boundary Conditions

A heat problem with Robin boundary conditions

Goal: Solve the heat problem

Up = Uy (0<x< L, 0<t),
u(0,t) =0 (0<t),
uy(L,t) = —kru(L, t) (0<t), (1)
u(x,0) = f(x) (0 <x<L).
Remarks:

@ The condition (1) is linear and homogeneous:
ku(L,t) + ux(L, t) =0

Recall that this is called a Robin condition.

@ We take x > 0. This means that the bar radiates heat to its
surroundings at a rate proportional to its current temperature.
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Robin Boundary Conditions

Separation of variables

As before, the assumption that u(x, t) = X(x) T(t) leads to the
ODEs
X"—kX =0, T —c?kT =0,

and the boundary conditions imply
X(0)=0, X'(L)=—rX(L).

Also as before, we solve for X first.

Case 1: kK = 0. As above, solving X" =0 gives X = c1x + .
The boundary conditions become

0=X(0)=c, c1=X(L)=—-rX(L)=—k(ciL+ )
= C1(1+/€L):0 = ¢ =0.

Hence, X = 0 in this case.
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Robin Boundary Conditions

Case 1: k = ;2 > 0. Again we have X" — ;42X =0 and
X = e + cpe M,
The boundary conditions become
0=c1+ o, ,u(cle“L — c2e’”L) = —n(cle“L + c2e’“L)7

or in matrix form

(oot wmment ) ()= (0)

The determinant is
(k—p)e Pt —(rtp)ert = — (/{(e“L —e M) 4 p(et + e_“L)) <0,

sothat c; = o =0and X = 0.
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Robin Boundary Conditions

Case 3: k= —p? < 0. From X" 4 12X = 0 we find
X = ¢ cos(pux) + ¢ sin(px)
and from the boundary conditions we have

0=ci, wp(—csin(ul)+ cxcos(ul)) = —r(cicos(ul) + cosin(ul))
= o (pcos(ul) + xsin(ul)) = 0.

So that X # 0, we must have

weos(ul) + ksin(ul) =0 = tan(ul) = —%.

This equation has an infinite sequence of positive solutions
0<pr <po<pz<--

and we obtain X = X,, = sin(ppx) for n € N.
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Robin Boundary Conditions

The solutions of tan(ul) = —pu/k

The figure below shows the curves y = tan(uL) (in red) and
y = —u/k (in blue).

-
Ll/ 5

i /L 3m/2L

2L ¢n/L

The p-coordinates of their intersections (in pink) are the values p1,
sz I~'L3v e
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Robin Boundary Conditions

Remarks: From the diagram we see that:

e For each n, (2n— )7 /2L < p, < nm/L.
@ As n— oo, ip — (2n— 1) /2L.

@ Smaller values of k and L tend to accelerate this convergence.

Normal modes: As in the earlier situations, for each n € N we
have the corresponding

T=T,=coe Mt \, = Cltn
which gives the normal mode

Un(x, t) = Xn(x) Ta(t) = cne 2t sin(unx).
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Robin Boundary Conditions

Superposition

Superposition of normal modes gives the general solution
[e¢]
Jt) = Z un(x, Z cpe Aot sin (penx).
n=1
Imposing the initial condition gives us
f(x) = u(x,0) = chsm HnX).

This is a generalized Fourier sine series for f(x). It is different
from the ordinary sine series for f(x) since

Wn is not a multiple of w/L.
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Robin Boundary Conditions

Generalized Fourier coefficients

To compute the generalized Fourier coefficients c, we will use:

The functions

X1(x) = sin(p1x), Xo(x) = sin(p2x), X3(x) = sin(u3x), . ..

form a complete orthogonal set on [0, L].

@ Complete means that all “sufficiently nice” functions can be
represented via generalized Fourier series.

@ Recall that f(x) and g(x) are orthogonal on [0, L] provided
L
(f.8) = | Fglx) dx o
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Robin Boundary Conditions

“Extracting” the generalized Fourier coefficients

If f(x ch sin(fnx) chX (x) and m € N we have

n=1
<ZC,,X,,,X > ch<xn7Xm>
n=1
— Cm<XmaXm>

since (Xp, Xm) = 0 for n # m. It follows that the generalized
Fourier coefficients are given by

L
(F.X0) /0 f(x)sm(,unx)dx'

Xny Xn) L
(X Xa) / sin®(nx) dx
0

Ch =
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Robin Boundary Conditions

Conclusion

The solution to the heat problem with boundary and initial

conditions
u(0,t) =0, ux(L,t)=—ru(L,t) (0 <t),
u(x,0) = f(x) (0<x <L)

is given by u(x, t) Z cpe Aot sin (pnx), where p, is the nth

positive solution to tan(uL) = _—M, An = Clin, and
K

fo )sin(pnx) dx
fo sin?(punx) dx

Gy =
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Robin Boundary Conditions

Remarks:

e For any given f(x) these integrals can be computed explicitly
in terms of pp.

@ The values of u,, however, must typically be found via
numerical methods.

Solve the following heat problem:

1
Utzguxx (0<x<3, 0<t),
1
u(0,t) =0, ux(3,t) = —§u(37 t) (0<t),
x
u(x,0) = 100 (1 - §) (0 < x < 3).

We have ¢ =1/5, L =3, k =1/2 and f(x) = 100(1 — x/3).
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Robin Boundary Conditions

The integrals defining the Fourier coefficients are

3 X\ . 100(3pn — sin(3pn))
100/O <1 — §) sin(fnx) dx = 32

and

3
/ sin?(p,x) dx = g + cos?(3pun).
0

Hence
200(3pn — sin(3un))

“ 7 342 (3+ 2cos?(3un)’

We therefore have

o0

200(341n — sin(31n)) 20 /05
t — /’Ln/s n
0= 2 3z aeon ) )

where p, is the nth positive solution to tan(3u) = —2pu.
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Robin Boundary Conditions

Remarks:

@ In order to use this solution for numerical approximation or
visualization, we must compute the values .

@ This can be done numerically in Maple, using the fsolve
command. Specifically, 1, can be computed via the input

fsolve (tan(m*L)=-m/k,m=(2xn-1)*Pi/ (2xL) . .n*Pi/L);

where L and k have been assigned the values of L and &,
respectively.

@ These values can be computed and stored in an Array
structure, or one can define i, as a function using the —>
operator.
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Robin Boundary Conditions

Here are approximations to the first 5 values of u, and ¢, in the
preceding example.

Hn Cn
0.7249 | 47.0449
1.6679 | 45.1413
2.6795 | 21.3586
3.7098 | 19.3403
47474 | 12.9674

1AW N RS

Therefore

u(x, t) = 47.0449e 992108 5in(0.7249x) 4 45.1413e 1113 5in(1.6679x)
+ 21.3586e0-28721 5in(2.6795x) + 19.3403e%-5%%% 5in(3.7098x)
+ 12.9674e 09015 5in(4.7474x) + - - -
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