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A heat problem with Neumann boundary conditions

Goal: Solve the following heat problem:

ut = c2uxx (0 < x < L , 0 < t),

ux(0, t) = ux(L, t) = 0 (0 < t),

u(x , 0) = f (x) (0 < x < L).

This models the heat flow in a wire of length L with given initial
temperature distribution and insulated ends.

As before, assuming u(x , t) = X (x)T (t) yields the system

X ′′ − kX = 0, X ′(0) = X ′(L) = 0,

T ′ − c2kT = 0.

Note that the boundary conditions on X are not the same as in the
Dirichlet condition case.
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Solving for X

Case 1: k = µ2 > 0. We need to solve X ′′ − µ2X = 0. The
characteristic equation is

r2 − µ2 = 0 ⇒ r = ±µ,

which gives the general solution X = c1e
µx + c2e

−µx . The
boundary conditions tell us that

0 = X ′(0) = µc1 − µc2, 0 = X ′(L) = µc1e
µL − µc2e−µL,

or in matrix form(
µ −µ

µeµL −µe−µL
) (

c1
c2

)
=

(
0
0

)
.

Since the determinant is µ2(eµL − e−µL) 6= 0, we must have
c1 = c2 = 0, and so X ≡ 0.
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Case 2: k = 0. We need to solve X ′′ = 0. Integrating twice gives

X = c1x + c2.

The boundary conditions give 0 = X ′(0) = X ′(L) = c1. Taking
c2 = 1 we get the solution

X = X0 = 1.

Case 3: k = −µ2 < 0. We need to solve X ′′ + µ2X = 0. The
characteristic equation is

r2 + µ2 = 0 ⇒ r = ±iµ,

which gives the general solution X = c1 cos(µx) + c2 sin(µx).
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The boundary conditions yield

0 = X ′(0) = −µc1 sin 0 + µc2 cos 0 = µc2 ⇒ c2 = 0,

0 = X ′(L) = −µc1 sin(µL) + µc2 cos(µL) = −µc1 sin(µL).

In order to have X 6≡ 0, this shows that we need

sin(µL) = 0 ⇒ µL = nπ ⇒ µ = µn =
nπ

L
(n ∈ Z).

Taking c1 = 1 we obtain

X = Xn = cos(µnx) (n ∈ N).

Remarks:

We only need n > 0, since cosine is an even function.

When n = 0 we get X0 = cos 0 = 1, which agrees with the
k = 0 result.
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Normal modes and superposition

As before, for k = −µ2n, we obtain T = Tn = ane
−λ2nt .

We therefore have the normal modes

un(x , t) = Xn(x)Tn(t) = ane
−λ2nt cos(µnx) (n ∈ N0),

where µn = nπ/L and λn = cµn.

The principle of superposition now gives the general solution

u(x , t) = u0 +
∞∑
n=1

un = a0 +
∞∑
n=1

ane
−λ2nt cos(µnx)

to the heat equation with (homogeneous) Neumann boundary
conditions.
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Initial conditions

If we now impose our initial condition we find that

f (x) = u(x , 0) = a0 +
∞∑
n=1

an cos
nπx

L
,

which is simply the 2L-periodic cosine expansion of f (x). Hence

a0 =
1

L

∫ L

0
f (x) dx , an =

2

L

∫ L

0
f (x) cos

nπx

L
dx , (n ∈ N).

Remarks:

As before, if the cosine series of f (x) is already known, u(x , t)
can be built by simply including exponential factors.

Because of the exponential factors, lim
t→∞

u(x , t) = a0, which is

the average initial temperature.
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Example

Solve the following heat problem:

ut =
1

4
uxx , 0 < x < 1 , 0 < t,

ux(0, t) = ux(1, t) = 0, 0 < t,

u(x , 0) = 100x(1− x), 0 < x < 1.

We have c = 1/2, L = 1 and f (x) = 100x(1− x). Therefore

a0 =

∫ 1

0
100x(1− x) dx =

50

3

an = 2

∫ 1

0
100x(1− x) cos nπx dx =

−200(1 + (−1)n)

n2π2
, n ≥ 1.
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Example 1

Since λn = cnπ/L = nπ/2, plugging everything into the general
solution we get

u(x , t) =
50

3
− 200

π2

∞∑
n=1

(1 + (−1)n)

n2
e−n

2π2t/4 cos nπx .

As in the case of Dirichlet boundary conditions, the exponential
terms decay rapidly with t. We therefore have

lim
t→∞

u(x , t) =
50

3
.
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A heat problem with Robin boundary conditions

Goal: Solve the heat problem

ut = c2uxx (0 < x < L, 0 < t),

u(0, t) = 0 (0 < t),

ux(L, t) = −κu(L, t) (0 < t), (1)

u(x , 0) = f (x) (0 < x < L).

Remarks:

The condition (1) is linear and homogeneous:

κu(L, t) + ux(L, t) = 0

Recall that this is called a Robin condition.

We take κ > 0. This means that the bar radiates heat to its
surroundings at a rate proportional to its current temperature.
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Separation of variables

As before, the assumption that u(x , t) = X (x)T (t) leads to the
ODEs

X ′′ − kX = 0, T ′ − c2kT = 0,

and the boundary conditions imply

X (0) = 0, X ′(L) = −κX (L).

Also as before, we solve for X first.

Case 1: k = 0. As above, solving X ′′ = 0 gives X = c1x + c2.
The boundary conditions become

0 = X (0) = c2, c1 = X ′(L) = −κX (L) = −κ(c1L + c2)

⇒ c1(1 + κL) = 0 ⇒ c1 = 0.

Hence, X ≡ 0 in this case.
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Case 1: k = µ2 > 0. Again we have X ′′ − µ2X = 0 and

X = c1e
µx + c2e

−µx .

The boundary conditions become

0 = c1 + c2, µ(c1e
µL − c2e

−µL) = −κ(c1e
µL + c2e

−µL),

or in matrix form(
1 1

(κ+ µ)eµL (κ− µ)e−µL

) (
c1
c2

)
=

(
0
0

)
.

The determinant is

(κ−µ)e−µL−(κ+µ)eµL = −
(
κ(eµL − e−µL) + µ(eµL + e−µL)

)
< 0,

so that c1 = c2 = 0 and X ≡ 0.
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Case 3: k = −µ2 < 0. From X ′′ + µ2X = 0 we find

X = c1 cos(µx) + c2 sin(µx)

and from the boundary conditions we have

0 = c1, µ(−c1 sin(µL) + c2 cos(µL)) = −κ(c1 cos(µL) + c2 sin(µL))

⇒ c2 (µ cos(µL) + κ sin(µL)) = 0.

So that X 6≡ 0, we must have

µ cos(µL) + κ sin(µL) = 0 ⇒ tan(µL) = −µ
κ
.

This equation has an infinite sequence of positive solutions

0 < µ1 < µ2 < µ3 < · · ·

and we obtain X = Xn = sin(µnx) for n ∈ N.
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The solutions of tan(µL) = −µ/κ

The figure below shows the curves y = tan(µL) (in red) and
y = −µ/κ (in blue).

The µ-coordinates of their intersections (in pink) are the values µ1,
µ2, µ3, . . .
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Remarks: From the diagram we see that:

For each n, (2n − 1)π/2L < µn < nπ/L.

As n→∞, µn → (2n − 1)π/2L.

Smaller values of κ and L tend to accelerate this convergence.

Normal modes: As in the earlier situations, for each n ∈ N we
have the corresponding

T = Tn = cne
−λ2nt , λn = cµn

which gives the normal mode

un(x , t) = Xn(x)Tn(t) = cne
−λ2nt sin(µnx).
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Superposition

Superposition of normal modes gives the general solution

u(x , t) =
∞∑
n=1

un(x , t) =
∞∑
n=1

cne
−λ2nt sin(µnx).

Imposing the initial condition gives us

f (x) = u(x , 0) =
∞∑
n=1

cn sin(µnx).

This is a generalized Fourier sine series for f (x). It is different
from the ordinary sine series for f (x) since

µn is not a multiple of π/L.
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Generalized Fourier coefficients

To compute the generalized Fourier coefficients cn we will use:

Theorem

The functions

X1(x) = sin(µ1x),X2(x) = sin(µ2x),X3(x) = sin(µ3x), . . .

form a complete orthogonal set on [0, L].

Complete means that all “sufficiently nice” functions can be
represented via generalized Fourier series.

Recall that f (x) and g(x) are orthogonal on [0, L] provided

〈f , g〉 =

∫ L

0
f (x)g(x) dx = 0.
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“Extracting” the generalized Fourier coefficients

If f (x) =
∞∑
n=1

cn sin(µnx) =
∞∑
n=1

cnXn(x) and m ∈ N we have

〈f ,Xm〉 =

〈 ∞∑
n=1

cnXn,Xm

〉
=

∞∑
n=1

cn〈Xn,Xm〉

= cm〈Xm,Xm〉

since 〈Xn,Xm〉 = 0 for n 6= m. It follows that the generalized
Fourier coefficients are given by

cn =
〈f ,Xn〉
〈Xn,Xn〉

=

∫ L

0
f (x) sin(µnx) dx∫ L

0
sin2(µnx) dx

.

Daileda Neumann and Robin conditions



Neumann Boundary Conditions Robin Boundary Conditions

Conclusion

Theorem

The solution to the heat problem with boundary and initial
conditions

u(0, t) = 0, ux(L, t) = −κu(L, t) (0 < t),

u(x , 0) = f (x) (0 < x < L)

is given by u(x , t) =
∞∑
n=1

cne
−λ2nt sin(µnx), where µn is the nth

positive solution to tan(µL) =
−µ
κ

, λn = cµn, and

cn =

∫ L
0 f (x) sin(µnx) dx∫ L

0 sin2(µnx) dx
.
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Remarks:

For any given f (x) these integrals can be computed explicitly
in terms of µn.

The values of µn, however, must typically be found via
numerical methods.

Example

Solve the following heat problem:

ut =
1

25
uxx (0 < x < 3, 0 < t),

u(0, t) = 0, ux(3, t) = −1

2
u(3, t) (0 < t),

u(x , 0) = 100
(

1− x

3

)
(0 < x < 3).

We have c = 1/5, L = 3, κ = 1/2 and f (x) = 100(1− x/3).
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The integrals defining the Fourier coefficients are

100

∫ 3

0

(
1− x

3

)
sin(µnx) dx =

100(3µn − sin(3µn))

3µ2n

and ∫ 3

0
sin2(µnx) dx =

3

2
+ cos2(3µn).

Hence

cn =
200(3µn − sin(3µn))

3µ2n (3 + 2 cos2(3µn))
.

We therefore have

u(x , t) =
∞∑
n=1

200(3µn − sin(3µn))

3µ2n (3 + 2 cos2(3µn))
e−µ

2
nt/25 sin(µnx),

where µn is the nth positive solution to tan(3µ) = −2µ.
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Remarks:

In order to use this solution for numerical approximation or
visualization, we must compute the values µn.

This can be done numerically in Maple, using the fsolve

command. Specifically, µn can be computed via the input

fsolve(tan(m∗L)=-m/k,m=(2∗n-1)∗Pi/(2∗L)..n∗Pi/L);

where L and k have been assigned the values of L and κ,
respectively.

These values can be computed and stored in an Array

structure, or one can define µn as a function using the ->

operator.
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Here are approximations to the first 5 values of µn and cn in the
preceding example.

n µn cn
1 0.7249 47.0449
2 1.6679 45.1413
3 2.6795 21.3586
4 3.7098 19.3403
5 4.7474 12.9674

Therefore

u(x , t) = 47.0449e−0.0210t sin(0.7249x) + 45.1413e−0.1113t sin(1.6679x)

+ 21.3586e−0.2872t sin(2.6795x) + 19.3403e−0.5505t sin(3.7098x)

+ 12.9674e−0.9015t sin(4.7474x) + · · ·
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