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Steady state solutions to the 2-D heat equation
Laplace’s equation

Recall: A steady state solution to a (time-dependent) PDE
satisfies ut ≡ 0.

Steady state solutions of the 1-D heat equation ut = c2uxx
satisfy

uxx = 0,

i.e. are simply straight lines.

Steady state solutions of the 2-D heat equation ut = c2∇2u

satisfy

∇
2u = uxx + uyy = 0 (Laplace’s equation),

and are called harmonic functions.
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Dirichlet problems

Definition: The Dirichlet problem on a region R ⊆ R
2 is the

boundary value problem

∇
2u = 0 inside R

u(x , y) = f (x , y) on ∂R .

Δ

u=2 0

u x,y( )= f x,y( )

For simplicity we will assume that:

The region is rectangular: R = [0, a]× [0, b].

The boundary conditions are given on each edge separately.

u(x , 0) = f1(x), u(x , b) = f2(x), 0 < x < a,

u(0, y) = g1(y), u(a, y) = g2(y), 0 < y < b.
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Solving the Dirichlet problem on a rectangle

Strategy: Reduce to four simpler problems and use superposition.

∇ u = 0
2

u
(0

,y
)=

 g
 (

y
)

u(x,0)=f (x)

u
(a

,y
)=

g
 (y

)

u(x,b)=f (x)

2

1

2

1

(*)

∇ u = 0
2

u
(0

,y
)=

 0

u(x,0)=f (x)
u
(a

,y
)=

0

u(x,b)=0

1

(A)

∇ u = 0
2

u
(0

,y
)=

0

u(x,0)=0

u
(a

,y
)=

0

u(x,b)=f (x)2

(B)

=
⊕

∇ u = 0
2

u
(0

,y
)=

g
 (

y
)

u(x,0)=0

u
(a

,y
)=

0

u(x,b)=0

1

(C)

∇ u = 0
2

u
(0

,y
)=

 0

u(x,0)=0

u
(a

,y
)=

g
 (y

)

u(x,b)=0

2

(D)
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Remarks:

If u1, u2, u3 and u4 solve the Dirichlet problems (A), (B), (C)
and (D) (respectively), then the general solution to (∗) is

u = u1 + u2 + u3 + u4.

The boundary conditions in (A) - (D) are all homogeneous,
with the exception of a single edge.

Problems with inhomogeneous Neumann or Robin boundary
conditions (or combinations thereof) can be reduced in a
similar manner.
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Solution of the Dirichlet problem on a rectangle
Case B

Goal: Solve the boundary value problem

∇
2u = 0, 0 < x < a, 0 < y < b,

u(x , 0) = 0, u(x , b) = f2(x), 0 < x < a,

u(0, y) = u(a, y) = 0, 0 < y < b.

Setting u(x , y) = X (x)Y (y) leads to

X ′′ + kX = 0, Y ′′
− kY = 0,

X (0) = X (a) = 0, Y (0) = 0.

We know the nontrivial solutions for X are given by

X (x) = Xn(x) = sin(µnx), µn =
nπ

a
, k = µ2

n (n ∈ N).
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Interlude
The hyperbolic trigonometric functions

The hyperbolic cosine and sine functions are

cosh y =
ey + e−y

2
, sinh y =

ey − e−y

2
.

They satisfy the following identities:

cosh2 y − sinh2 y = 1,

d

dy
cosh y = sinh y ,

d

dy
sinh y = cosh y .

It follows that the general solution to the ODE Y ′′ − µ2Y = 0 is

Y = A cosh(µy) + B sinh(µy).
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Using µ = µn and Y (0) = 0, we find

Y (y) = Yn(y) = An cosh(µny) + Bn sinh(µny)

0 = Yn(0) = An cosh 0 + Bn sinh 0 = An.

This yields the separated solutions

un(x , y) = Xn(x)Yn(y) = Bn sin(µnx) sinh(µny),

and superposition gives the general solution

u(x , y) =
∞
∑

n=1

Bn sin(µnx) sinh(µny).

Finally, the top edge boundary condition requires that

f2(x) = u(x , b) =
∞
∑

n=1

Bn sinh (µnb) sin (µnx) .
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Conclusion

Appealing to the formulae for sine series coefficients, we can now
summarize our findings.

Theorem

If f2(x) is piecewise smooth, the solution to the Dirichlet problem

∇2u = 0, 0 < x < a, 0 < y < b,

u(x , 0) = 0, u(x , b) = f2(x), 0 < x < a,

u(0, y) = u(a, y) = 0, 0 < y < b,

is

u(x , y) =

∞
∑

n=1

Bn sin(µnx) sinh(µny),

where µn =
nπ

a
and Bn =

2

a sinh(µnb)

∫ a

0

f2(x) sin(µnx) dx .
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Remark: If we know the sine series expansion for f2(x) on [0, a],
then we can use the relationship

Bn =
1

sinh(µnb)
(nth sine coefficient of f2) .

Example

Solve the Dirichlet problem on the square [0, 1] × [0, 1], subject to
the boundary conditions

u(x , 0) = 0, u(x , 1) = f2(x), 0 < x < 1,

u(0, y) = u(1, y) = 0, 0 < y < 1,

where

f2(x) =

{

75x if 0 ≤ x ≤ 2
3
,

150(1 − x) if 2
3
< x ≤ 1.
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We have a = b = 1. The graph of f2(x) is:

According to exercise 2.4.17 (with p = 1, a = 2/3 and h = 50),
the sine series for f2 is:

f2(x) =
450

π2

∞
∑

n=1

sin
(

2nπ
3

)

n2
sin(nπx).
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Thus,

Bn =
1

sinh(nπ)

(

450

π2

sin
(

2nπ
3

)

n2

)

=
450

π2

sin
(

2nπ
3

)

n2 sinh(nπ)
,

and

u(x , y) =
450

π2

∞
∑

n=1

sin
(

2nπ
3

)

n2 sinh(nπ)
sin(nπx) sinh(nπy).
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Solution of the Dirichlet problem on a rectangle
Cases A and B

We have already seen that the solution to (B) is given by

u2(x , y) =

∞
∑

n=1

Bn sin
(nπx

a

)

sinh
(nπy

a

)

,

where

Bn =
2

a sinh
(

nπb
a

)

∫ a

0

f2(x) sin
(nπx

a

)

dx .

Separation of variables to shows that the solution to (A) is

u1(x , y) =

∞
∑

n=1

An sin
(nπx

a

)

sinh

(

nπ(b − y)

a

)

,

where

An =
2

a sinh
(

nπb
a

)

∫ a

0

f1(x) sin
(nπx

a

)

dx .

Daileda The 2D heat equation



Solution of the Dirichlet problem on a rectangle
Cases C and D

Likewise, the solution to (C) is

u3(x , y) =

∞
∑

n=1

Cn sinh

(

nπ(a − x)

b

)

sin
(nπy

b

)

,

with

Cn =
2

b sinh
(

nπa
b

)

∫ b

0

g1(y) sin
(nπy

b

)

dy .

And the solution to (D) is

u4(x , y) =
∞
∑

n=1

Dn sinh
(nπx

b

)

sin
(nπy

b

)

,

where

Dn =
2

b sinh
(

nπa
b

)

∫ b

0

g2(y) sin
(nπy

b

)

dy .

Daileda The 2D heat equation



Remarks:

In each case, the coefficients of the solution are just multiples
of the Fourier sine coefficients of the nonzero boundary
condition, e.g.

Dn =
1

sinh
(

nπa
b

) (nth sine coefficient of g2 on [0, b]) .

The coefficients for each boundary condition are independent
of the others.

If any of the boundary conditions is zero, we may omit that
term from the solution, e.g. if g1 ≡ 0, then we don’t need to
include u3.
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Example

Solve the Dirichlet problem on [0, 1] × [0, 2] with the following

boundary conditions.

∇ u = 0
2

u=2

u=0

u
=

(2
-y

) 
/22

We have a = 1, b = 2 and

f1(x) = 2, f2(x) = 0, g1(y) =
(2− y)2

2
, g2(y) = 2− y .
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It follows that Bn = 0 for all n, and the remaining coefficients we
need are

An =
2

1 · sinh
(

nπ2
1

)

∫ 1

0

2 sin
(nπx

1

)

dx =
4(1 + (−1)n+1)

nπ sinh (2nπ)
,

Cn =
2

2 sinh
(

nπ1
2

)

∫ 2

0

(2− y)2

2
sin
(nπy

2

)

dy =
4(π2n2 − 2 + 2(−1)n)

n3π3 sinh
(

nπ
2

) ,

Dn =
2

2 sinh
(

nπ1
2

)

∫ 2

0

(2− y) sin
(nπy

2

)

dy =
4

nπ sinh
(

nπ
2

) .
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The complete solution is thus

u(x , y) =
∞
∑

n=1

4(1 + (−1)n+1)

nπ sinh(2nπ)
sin(nπx) sinh(nπ(2− y))

+

∞
∑

n=1

4(n2π2 − 2 + 2(−1)n)

n3π3 sinh
(

nπ
2

) sinh

(

nπ(1− x)

2

)

sin
(nπy

2

)

+

∞
∑

n=1

4

nπ sinh
(

nπ
2

) sinh
(nπx

2

)

sin
(nπy

2

)

.
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