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Polar coordinates

To solve boundary value problems on circular regions, it is
convenient to switch from rectangular (x,y) to polar (r,8) spatial
coordinates:

X = rcos@,
y =rsinf,
o
< :y
; . 2 2 _ 2
. - XSty =r-.
e

This requires us to express the rectangular Laplacian
VU = Uy + Uyy

in terms of derivatives with respect to r and 6.
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The chain rule

For any function f(r, ), we have the familiar tree diagram and
chain rule formulae:

or _oror o
Ox  Ordx 00 0x
f of _ofor ofon
/\ dy _ ordy | 000y
r 6 or
X 'y x y fio = frrc + fobx

fy = fery + foby
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First take f = u to obtain
Uy = Uply + Ué)ex = Uxx = Uplxx + (ur)xrx + UGGXX + (UG)XHX'
Applying the chain rule with f = u, and then with f = vy yields

Uxx = Urlxx + (Urrrx + Ur99x) I + upOxx + (Uerrx + U969x) O«

= Uplex + Upet2 + 20,0105 + Ughio + Ugah2.
An entirely similar computation using y instead of x also gives
Uy = Urlyy + u,,rf +2upgr 0y + ugby, + u@90§.
If we add these expressions and collect like terms we get
V2u = uy (rex + yy) + U (&2 + fy2) + 2urg (refx + ry0y)

+ U (Oxx + By ) + ugg (62 +65) .
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Differentiate x> + y? = r? with respect to x and then y:

X r—xre rP—x%> y?
2X =211 = Ix=— = I = 7 = T = 3
r r r r
2 2 2
y r—yr, rc—y X
2y =2rr, = == = r, = = = —.
y y =5 vy 2 3 3

Now differentiate tand = 2 with respect to x and then y:
X

2
2 _ Y _ ycostf y 2y 2xy
e 0bi=—p T =T =g T = =T
1 cos’f  x —2x 2xy
2
sec 90y:; = 0, = Faails” = gyyZTry:_j
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Together these yield

Y+X_1 2 2_X2+y2_

rXX+ryy—T—;, I’X+ry— r2 =1.
2xy 2xy 5 2 _ y? 4 x? 1
9XX+0yy:rT+ _0 0 "‘9 r4 :r72’
X
rX9X+ry9y_—+y—_o7

and we finally obtain

V2U =ur (rxx + ryy) + Uy (rz + I’f) + 2Ur9 (rxex + ryey)
+ g (Oxx + Oyy) + uga (9>2< + 0)2/)

1 1 1
=—Ur+ Uy + —5Ugg = Urr + —ur+ —5 Ugo-
r r r r
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Yy
x2 + y2

Use polar coordinates to show that the function u(x,y) =

is harmonic.

We need to show that V2u = 0. In polar coordinates we have

rsin@ B sin@

U(I’, 0) = 2

so that

sinf 2sin6 —sinf

Ur_—rT, = "3 Upg = PR

and thus

1 1 2sinf  sin@  sin6

Vzu:u,,+—ur+—2ue9: s ——3 — 3 =0
r r r r r
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The Dirichlet problem on a disk

Goal: Solve the Dirichlet problem on a disk of radius a, centered
at the origin. In polar coordinates this has the form

u=f

1 1
V2u:urr+;ur+ﬁue9:0, 0<r<a, C v2u

u(a,0) = £(0), 0<0 <2 \

% =
o/ | ©
x

Remarks:

@ We will require that f is 2m-periodic.

o Likewise, we require that u(r,0) is 2m-periodic in 6.
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Separation of variables

If we assume that u(r,6) = R(r)©(f) and plug into V2u = 0, we
get
R/l R/ @//

R R/ R "o _ 20 N
O+ - @—i— ©0"=0 = r R+rR+ o =0

/! / "
= rzR——FrE @— =\
R R ©

This yields the pair of separated ODEs
rPR"+rR' —AR=0 and ©"+ )0 =0.
We also have the “boundary conditions”

© is 2m-periodic and  lim R(r) is finite.

r—07+
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Solving for ©

The solutions of ©” + A\@ = 0 are periodic only if

A=u?>0 = O =acos(ub)+ bsin(ub).
In order for the period to be 27 we also need

1 =cos(0u) = cos(2mp) = 2mp=27mn = p=né€ Np.

Hence A = n? and

© = 0, = a,cos(nf) + bpsin(nd), n e Ny.
It follows that R satisfies

rPR" + R — n’R =0,

which is called an Euler equation.
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Interlude

Euler equations

An Euler equation is a second order ODE of the form
X2y" + axy' + By = 0.
Its solutions are determined by the roots of its indicial equation
P+ (a—-1)p+a=0.
Case 1: If the roots are p; # p», then the general solution is
y = axt + cxP?.

Case 2: If there is only one root pi, then the general solution is

y = a1x”t + cxPIn x.
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Solving for R

The indicial equation of r’R” + rR' — n?R =0is
P+A-Dp-—n’=p>—n>=0 = p=+n

This means that

R=car"+cr" (n#0),
R=ca+clnr (n=0).

These will be finite at r = 0 only if ¢ = 0. Setting c; = a~" gives

R=R,= (g) n e No.
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Separated solutions and superposition

We therefore obtain the separated solutions
un(r,0) = Ra(r)©,(0) = (g)n (ancos(n@) + b, sin(nf)), n € Np.
Noting that
r\O0
uo(r,0) = <5) (ap cos 0 + by sin 0) = ao,

superposition gives the general solution

(r,0) _30+Z< ) (ancos(nf) + bysin(nd)) .
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Boundary values and conclusion

Imposing our Dirichlet boundary conditions gives

f(0) = u(a,0) = ao + Z (ancos(nf) + bysin(nf)),
n=1

which is just the ordinary 27-periodic Fourier series for f!

Theorem

The solution of the Dirichlet problem on the disk of radius a
centered at the origin, with boundary condition u(a,0) = f(6) is
u(r,0) = ao + 3021 (£)" (ancos(nf) + b,sin(nd)), where

1 27
= — f(0)do
a0 21 Jy ( ) )
1 o 1 27
a, = / £(0) cos(nb) db, b, = / f(0)sin(nb) do.
™ Jo ™ Jo
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Example

Find the solution to the Dirichlet problem on a disk of radius 3
with boundary values given by

N(r+20) if F<0<0,
f(0)=q2(r—20) if 0<6<3,
0

LT 3

We have a = 3. The graph of f is

ol
B
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According to exercise 2.3.8 (with p =7, ¢ =30 and d = 7/2):

15 120 <~ 1 — cos(nm/2
f(@) - 7 + ? ng / ) COS(HQ).
n=1

Hence, the solution to the Dirichlet problem is

u(r0) = 22 4 2205 (ryn L= coslom)/2)

>t cos(nf).

n2
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Solve the Dirichlet problem on a disk of radius 2 with boundary
values given by f(0) = cos? 0. Express your answer in cartesian
coordinates.

We have a = 2 and

l1+cos(2) 1 1
— 29 _ — 4=
f(0) =cos“ 0 = 5 5 + 5 cos(26),
which is a finite 27-periodic Fourier series (i.e. ag = 1/2,
a; = 1/2, and all other coefficients are zero).
Hence

1 2 1 1 r?cos(26
u(r,0) ==+ (%) : 5cos(20) =5 + rco85().
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Since cos(26) = cos? @ — sin? ), we find that
r? cos(20) = r? cos® § — r’sin? 0 = x* — y?

and hence
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Solve the Dirichlet problem on a disk of radius 1 if the boundary
value is 50 in the first quadrant, and zero elsewhere.

We are given a=1, f(#) =50 for 0 < 0 < /2 and f(#) =0
otherwise. The Fourier coefficients of f are

- / 5040 — =
50sin(nm/2)

an = / 50 cos(nf) df = ————=,
nm

T Jo
/2 _
by = 50sin(nd) d = 200 = <os(1m/2))
™ Jo nm
so that
u(r,0 —|— Z r" (sm nm/2) cos(nf) + (1= coi(mr/2)) sin(n@)) .
n=1
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Remarks:

@ One can frequently use identities like (valid for |r| < 1)

Zrcos(ng):—;ln(l—2rc059+r2)v

n

n=1

>, r"sin(nf) < rsin6 >
Z ——= =arctan | —— |,
p— n 1—rcosf

to convert series solutions in polar coordinates to cartesian
expressions.

@ Using the second identity, one can show that the solution in
the preceding example is

u(x )*25—1—@ arctan | —2— ) + arctan | ——
Y= TS 1—x 1-y))"
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