An Introduction to Bessel Functions

R. C. Daileda

Trinity University

Partial Differential Equations
 March 25, 2014

Bessel's equation

Given $p \geq 0$, the ordinary differential equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0, \quad x>0 \tag{1}
\end{equation*}
$$

is known as Bessel's equation of order p.

- Solutions to (1) are known as Bessel functions.
- Since (1) is a second order homogeneous linear equation, the general solution is a linear combination of any two linearly independent (i.e. fundamental) solutions.
- We will describe and give the basic properties of the most commonly used pair of fundamental solutions.

The method of Frobenius

We begin by assuming the solution has the form

$$
y=\sum_{m=0}^{\infty} a_{m} x^{r+m} \quad\left(a_{0} \neq 0\right)
$$

and try to determine r and a_{m}.
Substituting into Bessel's equation and collecting terms with common powers of x gives

$$
\begin{aligned}
& a_{0}\left(r^{2}-p^{2}\right) x^{r}+a_{1}\left((r+1)^{2}-p^{2}\right) x^{r+1}+ \\
& \quad \sum_{m=2}^{\infty}\left(a_{m}\left((r+m)^{2}-p^{2}\right)+a_{m-2}\right) x^{r+m}=0
\end{aligned}
$$

Setting the coefficients equal to zero gives the equations

$$
\begin{aligned}
& a_{0}\left(r^{2}-p^{2}\right)=0 \Rightarrow r= \pm p, \quad a_{1}\left((r+1)^{2}-p^{2}\right)=0 \Rightarrow a_{1}=0 \\
& \quad a_{m}\left((r+m)^{2}-p^{2}\right)+a_{m-2}=0 \\
& \quad \Rightarrow \quad a_{m}=\frac{-a_{m-2}}{(r+m)^{2}-p^{2}}=\frac{-a_{m-2}}{m(m+2 p)} \quad(m \geq 2)
\end{aligned}
$$

This means that $a_{1}=a_{3}=a_{5}=\cdots=a_{2 k+1}=0$ and
$a_{2}=\frac{-a_{0}}{2(2+2 p)}=\frac{-a_{0}}{2^{2}(1+p)}$,
$a_{4}=\frac{-a_{2}}{4(4+2 p)}=\frac{-a_{2}}{2^{2} 2(2+p)}=\frac{a_{0}}{2^{4} 2(1+p)(2+p)}$,
$a_{6}=\frac{-a_{4}}{6(6+2 p)}=\frac{-a_{4}}{2^{2} 3(3+p)}=\frac{-a_{0}}{2^{6} 3!(1+p)(2+p)(3+p)}$,
$a_{8}=\frac{-a_{6}}{8(8+2 p)}=\frac{-a_{6}}{2^{2} 4(4+p)}=\frac{a_{0}}{2^{8} 4!(1+p)(2+p)(3+p)(4+p)}$.

In general, we see that

$$
a_{2 k}=\frac{(-1)^{k} a_{0}}{2^{2 k} k!(1+p)(2+p) \cdots(k+p)} .
$$

Setting $r=p$ and $m=2 k$ in the original series gives

$$
\begin{aligned}
y & =\sum_{k=0}^{\infty} \frac{(-1)^{k} a_{0}}{2^{2 k} k!(1+p)(2+p) \cdots(k+p)} x^{2 k+p} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{p} a_{0}}{k!(1+p)(2+p) \cdots(k+p)}\left(\frac{x}{2}\right)^{2 k+p} .
\end{aligned}
$$

The standard way to choose a_{0} involves the so-called Gamma function.

Interlude

The Gamma function
The Gamma function is defined to be

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t \quad(x>0)
$$

One can use integration by parts to show that

$$
\Gamma(x+1)=x \Gamma(x)
$$

Applying this repeatedly, we find that for $k \in \mathbb{N}$

$$
\begin{aligned}
\Gamma(x+k) & =(x+k-1) \Gamma(x+k-1) \\
& =(x+k-1)(x+k-2) \Gamma(x+k-2) \\
& =(x+k-1)(x+k-2)(x+k-3) \Gamma(x+k-3) \\
& \vdots \\
& =(x+k-1)(x+k-2)(x+k-3) \cdots x \Gamma(x) .
\end{aligned}
$$

This has two nice consequences.

- According to the definition, one has $\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=1$. Setting $x=1$ above:

$$
\Gamma(k+1)=k(k-1)(k-2) \cdots 1 \cdot \Gamma(1)=k!
$$

This is why $\Gamma(x)$ is called the generalized factorial.

- Setting $x=p+1$ above:

$$
\Gamma(p+1+k)=(p+k)(p+k-1) \cdots(p+1) \Gamma(p+1)
$$

or

$$
\frac{1}{(1+p)(2+p) \cdots(k+p)}=\frac{\Gamma(p+1)}{\Gamma(k+p+1)} .
$$

Bessel functions of the first and second kind

Returning to Bessel's equation,

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0, \quad x>0
$$

choosing $a_{0}=\frac{1}{2^{p} \Gamma(p+1)}$ in the Frobenius solution, we now see that

$$
y=J_{p}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+p+1)}\left(\frac{x}{2}\right)^{2 k+p},
$$

is one solution.
$J_{p}(x)$ is called the Bessel function of the first kind of order p.

Remarks

- A second linearly independent solution can be found via reduction of order. When (appropriately normalized), it is denoted by

$$
Y_{p}(x)
$$

and is called the Bessel function of the second kind of order p.

- The general solution to Bessel's equation is

$$
y=c_{1} J_{p}(x)+c_{2} Y_{p}(x)
$$

- In Maple, the functions $J_{p}(x)$ and $Y_{p}(x)$ are called by the commands

$$
\operatorname{BesselJ}(p, x) \text { and } \operatorname{BesselY}(p, x) .
$$

Graphs of Bessel functions

Properties of Bessel functions

- $J_{0}(0)=1, J_{p}(0)=0$ for $p>0$ and $\lim _{x \rightarrow 0^{+}} Y_{p}(x)=-\infty$.
- The values of J_{p} always lie between 1 and -1 .
- J_{p} has infinitely many positive zeros, which we denote by

$$
0<\alpha_{p 1}<\alpha_{p 2}<\alpha_{p 3}<\cdots
$$

- J_{p} is oscillatory and tends to zero as $x \rightarrow \infty$. More precisely,

$$
J_{p}(x) \sim \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{p \pi}{2}-\frac{\pi}{4}\right) .
$$

- $\lim _{n \rightarrow \infty}\left|\alpha_{p n}-\alpha_{p, n+1}\right|=\pi$.
- For $0<p<1$, the graph of J_{p} has a vertical tangent line at $x=0$.
- For $1<p$, the graph of J_{p} has a horizontal tangent line at $x=0$, and the graph is initially "flat."
- For some values of p, the Bessel functions of the first kind can be expressed in terms of familiar functions, e.g.

$$
\begin{aligned}
& J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x \\
& J_{5 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(\left(\frac{3}{x^{2}}-1\right) \sin x-\frac{3}{x} \cos x\right)
\end{aligned}
$$

Differentiation identities

Using the series definition of $J_{p}(x)$, one can show that:

$$
\begin{align*}
& \frac{d}{d x}\left(x^{p} J_{p}(x)\right)=x^{p} J_{p-1}(x) \\
& \frac{d}{d x}\left(x^{-p} J_{p}(x)\right)=-x^{-p} J_{p+1}(x) \tag{2}
\end{align*}
$$

The product rule and cancellation lead to

$$
\begin{aligned}
& x J_{p}^{\prime}(x)+p J_{p}(x)=x J_{p-1}(x) \\
& x J_{p}^{\prime}(x)-p J_{p}(x)=-x J_{p+1}(x)
\end{aligned}
$$

Addition and subtraction of these identities then yield

$$
\begin{aligned}
J_{p-1}(x)-J_{p+1}(x) & =2 J_{p}^{\prime}(x) \\
J_{p-1}(x)+J_{p+1}(x) & =\frac{2 p}{x} J_{p}(x)
\end{aligned}
$$

Integration identities

Integration of the differentiation identities (2) gives

$$
\begin{aligned}
\int x^{p+1} J_{p}(x) d x & =x^{p+1} J_{p+1}(x)+C \\
\int x^{-p+1} J_{p}(x) d x & =-x^{-p+1} J_{p-1}(x)+C .
\end{aligned}
$$

- Exercises 4.2.12 and 4.3.9 give similar identities.
- Identities such as these can be used to evaluate certain integrals of the form

$$
\int_{0}^{a} f(r) J_{m}\left(\lambda_{m n} r\right) r d r
$$

which will occur frequently in later work.

Example

Evaluate

$$
\int x^{p+5} J_{p}(x) d x
$$

We integrate by parts, first taking

$$
\begin{aligned}
u & =x^{4} & & d v=x^{p+1} J_{p}(x) d x \\
d u & =4 x^{3} d x & & v=x^{p+1} J_{p+1}(x),
\end{aligned}
$$

which gives

$$
\int x^{p+5} J_{p}(x) d x=x^{p+5} J_{p+1}(x)-4 \int x^{p+4} J_{p+1}(x) d x
$$

Now integrate by parts again with

$$
\begin{aligned}
u & =x^{2} & & d v=x^{p+2} J_{p+1}(x) d x \\
d u & =2 x d x & & v=x^{p+2} J_{p+2}(x),
\end{aligned}
$$

to get

$$
\begin{aligned}
& \int x^{p+5} J_{p}(x) d x=x^{p+5} J_{p+1}(x)-4 \int x^{p+4} J_{p+1}(x) d x \\
& =x^{p+5} J_{p+1}(x)-4\left(x^{p+4} J_{p+2}(x)-2 \int x^{p+3} J_{p+2}(x) d x\right) \\
& =x^{p+5} J_{p+1}(x)-4 x^{p+4} J_{p+2}(x)+8 x^{p+3} J_{p+3}(x)+C .
\end{aligned}
$$

The parametric form of Bessel's equation

For $p \geq 0$, consider the parametric Bessel equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(\lambda^{2} x^{2}-p^{2}\right) y=0 \quad(\lambda>0) \tag{3}
\end{equation*}
$$

If we let $\xi=\lambda x$, then the chain rule implies

$$
\begin{aligned}
y^{\prime} & =\frac{d y}{d x}=\frac{d y}{d \xi} \frac{d \xi}{d x}=\lambda \dot{y} \\
y^{\prime \prime} & =\frac{d y^{\prime}}{d x}=\lambda \frac{d \dot{y}}{d x}=\lambda \frac{d \dot{y}}{d \xi} \frac{d \xi}{d x}=\lambda^{2} \ddot{y}
\end{aligned}
$$

Hence (3) becomes

$$
\xi^{2} \ddot{y}+\xi \dot{y}+\left(\xi^{2}-p^{2}\right) y=0,
$$

which is Bessel's equation in the variable ξ.

It follows that

$$
y=c_{1} J_{p}(\xi)+c_{2} Y_{p}(\xi)=c_{1} J_{p}(\lambda x)+c_{2} Y_{p}(\lambda x)
$$

gives the general solution to the parametric Bessel equation.

Because $\lim _{x \rightarrow 0^{+}} Y_{p}(x)=-\infty$, we find that

$$
y(0) \text { is finite } \Rightarrow c_{2}=0
$$

so that the only solutions that are defined at $x=0$ are

$$
y=c_{1} J_{p}(\lambda x)
$$

This will be important in later work.

