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Bessel’s equation

Given p ≥ 0, the ordinary differential equation

x2y ′′ + xy ′ + (x2 − p2)y = 0, x > 0 (1)

is known as Bessel’s equation of order p.

Solutions to (1) are known as Bessel functions.

Since (1) is a second order homogeneous linear equation, the
general solution is a linear combination of any two linearly
independent (i.e. fundamental) solutions.

We will describe and give the basic properties of the most
commonly used pair of fundamental solutions.
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The method of Frobenius

We begin by assuming the solution has the form

y =
∞
∑

m=0

amx
r+m (a0 6= 0)

and try to determine r and am.

Substituting into Bessel’s equation and collecting terms with
common powers of x gives

a0(r
2 − p2)x r + a1

(

(r + 1)2 − p2
)

x r+1+
∞
∑

m=2

(

am
(

(r +m)2 − p2
)

+ am−2

)

x r+m = 0.
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Setting the coefficients equal to zero gives the equations

a0(r
2 − p2) = 0 ⇒ r = ±p, a1

(

(r + 1)2 − p2
)

= 0 ⇒ a1 = 0,

am
(

(r +m)2 − p2
)

+ am−2 = 0

⇒ am =
−am−2

(r +m)2 − p2
=

−am−2

m(m + 2p)
(m ≥ 2).

This means that a1 = a3 = a5 = · · · = a2k+1 = 0 and

a2 =
−a0

2(2 + 2p)
=

−a0

22(1 + p)
,

a4 =
−a2

4(4 + 2p)
=

−a2

222(2 + p)
=

a0

242(1 + p)(2 + p)
,

a6 =
−a4

6(6 + 2p)
=

−a4

223(3 + p)
=

−a0

263!(1 + p)(2 + p)(3 + p)
,

a8 =
−a6

8(8 + 2p)
=

−a6

224(4 + p)
=

a0

284!(1 + p)(2 + p)(3 + p)(4 + p)
.
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In general, we see that

a2k =
(−1)ka0

22kk!(1 + p)(2 + p) · · · (k + p)
.

Setting r = p and m = 2k in the original series gives

y =

∞
∑

k=0

(−1)ka0
22kk!(1 + p)(2 + p) · · · (k + p)

x2k+p

=

∞
∑

k=0

(−1)k2pa0
k!(1 + p)(2 + p) · · · (k + p)

(x

2

)2k+p

.

The standard way to choose a0 involves the so-called Gamma

function.
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Interlude
The Gamma function

The Gamma function is defined to be

Γ(x) =

∫

∞

0
e−ttx−1 dt (x > 0).

One can use integration by parts to show that

Γ(x + 1) = x Γ(x).

Applying this repeatedly, we find that for k ∈ N

Γ(x + k) = (x + k − 1)Γ(x + k − 1)

= (x + k − 1)(x + k − 2)Γ(x + k − 2)

= (x + k − 1)(x + k − 2)(x + k − 3)Γ(x + k − 3)

...

= (x + k − 1)(x + k − 2)(x + k − 3) · · · x Γ(x).
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This has two nice consequences.

According to the definition, one has Γ(1) =
∫

∞

0 e−t dt = 1.
Setting x = 1 above:

Γ(k + 1) = k(k − 1)(k − 2) · · · 1 · Γ(1) = k!

This is why Γ(x) is called the generalized factorial.

Setting x = p + 1 above:

Γ(p + 1 + k) = (p + k)(p + k − 1) · · · (p + 1)Γ(p + 1)

or
1

(1 + p)(2 + p) · · · (k + p)
=

Γ(p + 1)

Γ(k + p + 1)
.
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Bessel functions of the first and second kind

Returning to Bessel’s equation,

x2y ′′ + xy ′ + (x2 − p2)y = 0, x > 0

choosing a0 =
1

2pΓ(p + 1)
in the Frobenius solution, we now see

that

y = Jp(x) =
∞
∑

k=0

(−1)k

k! Γ(k + p + 1)

(x

2

)2k+p

,

is one solution.

Jp(x) is called the Bessel function of the first kind of order p.
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Remarks

A second linearly independent solution can be found via
reduction of order. When (appropriately normalized), it is
denoted by

Yp(x),

and is called the Bessel function of the second kind of order p.

The general solution to Bessel’s equation is

y = c1Jp(x) + c2Yp(x).

In Maple, the functions Jp(x) and Yp(x) are called by the
commands

BesselJ(p,x) and BesselY(p,x).
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Graphs of Bessel functions
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Properties of Bessel functions

J0(0) = 1, Jp(0) = 0 for p > 0 and lim
x→0+

Yp(x) = −∞.

The values of Jp always lie between 1 and −1.

Jp has infinitely many positive zeros, which we denote by

0 < αp1 < αp2 < αp3 < · · ·

Jp is oscillatory and tends to zero as x → ∞. More precisely,

Jp(x) ∼

√

2

πx
cos

(

x −
pπ

2
−

π

4

)

.

lim
n→∞

|αpn − αp,n+1| = π .
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For 0 < p < 1, the graph of Jp has a vertical tangent line at
x = 0.

For 1 < p, the graph of Jp has a horizontal tangent line at
x = 0, and the graph is initially “flat.”

For some values of p, the Bessel functions of the first kind can
be expressed in terms of familiar functions, e.g.

J1/2(x) =

√

2

πx
sin x ,

J5/2(x) =

√

2

πx

((

3

x2
− 1

)

sin x −
3

x
cos x

)

.
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Differentiation identities

Using the series definition of Jp(x), one can show that:

d

dx
(xpJp(x)) = xpJp−1(x),

d

dx

(

x−pJp(x)
)

= −x−pJp+1(x).

(2)

The product rule and cancellation lead to

xJ ′p(x) + pJp(x) = xJp−1(x),

xJ ′p(x)− pJp(x) = −xJp+1(x).

Addition and subtraction of these identities then yield

Jp−1(x)− Jp+1(x) = 2J ′p(x),

Jp−1(x) + Jp+1(x) =
2p

x
Jp(x).
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Integration identities

Integration of the differentiation identities (2) gives

∫

xp+1Jp(x) dx = xp+1Jp+1(x) + C

∫

x−p+1Jp(x) dx = −x−p+1Jp−1(x) + C .

Exercises 4.2.12 and 4.3.9 give similar identities.

Identities such as these can be used to evaluate certain
integrals of the form

∫ a

0
f (r)Jm(λmnr)r dr ,

which will occur frequently in later work.

Daileda Bessel Functions



Bessel’s equation Frobenius’ method Γ(x) Bessel functions

Example

Evaluate
∫

xp+5Jp(x) dx .

We integrate by parts, first taking

u = x4 dv = xp+1Jp(x) dx

du = 4x3 dx v = xp+1Jp+1(x),

which gives

∫

xp+5Jp(x) dx = xp+5Jp+1(x) − 4

∫

xp+4Jp+1(x) dx .
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Now integrate by parts again with

u = x2 dv = xp+2Jp+1(x) dx

du = 2x dx v = xp+2Jp+2(x),

to get

∫

xp+5Jp(x)dx = xp+5Jp+1(x)− 4

∫

xp+4Jp+1(x) dx

= xp+5Jp+1(x)− 4

(

xp+4Jp+2(x)− 2

∫

xp+3Jp+2(x) dx

)

= xp+5Jp+1(x)− 4xp+4Jp+2(x) + 8xp+3Jp+3(x) + C .
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The parametric form of Bessel’s equation

For p ≥ 0, consider the parametric Bessel equation

x2y ′′ + xy ′ + (λ2x2 − p2)y = 0 (λ > 0). (3)

If we let ξ = λx , then the chain rule implies

y ′ =
dy

dx
=

dy

dξ

dξ

dx
= λẏ ,

y ′′ =
dy ′

dx
= λ

dẏ

dx
= λ

dẏ

dξ

dξ

dx
= λ2ÿ .

Hence (3) becomes

ξ2ÿ + ξẏ + (ξ2 − p2)y = 0,

which is Bessel’s equation in the variable ξ.
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It follows that

y = c1Jp(ξ) + c2Yp(ξ) = c1Jp(λx) + c2Yp(λx)

gives the general solution to the parametric Bessel equation.

Because lim
x→0+

Yp(x) = −∞, we find that

y(0) is finite ⇒ c2 = 0,

so that the only solutions that are defined at x = 0 are

y = c1Jp(λx).

This will be important in later work.
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