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The 2D wave equation

Vibrating membranes

Goal: Model the motion of an ideal elastic membrane.

Set up: Assume the membrane at rest is a region of the xy-plane
and let

vertical deflection of membrane from equilib-

u(x,y, t) = rium at position (x,y) and time t.

For a fixed t, the surface z = u(x, y, t) gives the shape of the
membrane at time t.

Under ideal assumptions (e.g. uniform membrane density, uniform
tension, no resistance to motion, small deflection, etc.) one can
show that u satisfies the two dimensional wave equation

U = 2V2u = (U + Uyy ).
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The 2D wave equation

We assume the membrane lies over the rectangular region
R = [0, a] x [0, b] and has fixed edges.
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These facts are expressed by the boundary conditions

u(0,y,t) =u(a,y,t) =0, 0<y<b t>0,
u(x,0,t) = u(x, b, t) =0, 0<x<a t>0.
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The 2D wave equation

We must also specify how the membrane is initially deformed and
set into motion. This is done via the initial conditions

U(vavo):f(XvY)> (X,y)ER,
uf(vavo):g(X>Y)a (X,y)ER.

New goal: solve the 2-D wave equation subject to the boundary
and initial conditions just given.

We will:

@ Use separation of variables to find simple solutions satisfying
the homogeneous boundary conditions; and

@ Use the principle of superposition to build up a series solution
that satisfies the initial conditions as well.
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Separation of variables

Separation of variables

We seek nontrivial solutions of the form

u(x,y,t) = X(x)Y(y) T(t).
Plugging this into ug = c?(Uxx + Uyy) we get

T/l Xl/ Y/l
XYT" =2 (X'"YT+XY'"T) = —=2_+ .
< ( + ) 2T X Ty

Because the two sides are functions of different independent
variables, they must be constant:

T" — AT =0,
Tl/ X/l Y/l
TRV Ty v
X Y '
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Separation of variables

Since the two sides again involve unrelated variables, both are
constant:

X —p=-21a
Setting C = A — B, these equations can be rewritten as
X"—BX=0, Y'-CYy=0.
The first boundary condition is
0=u(0,y,t) =X(0)Y(y)T(t).
Canceling Y and T yields X(0) = 0. Likewise, we obtain
X(a)=0, Y(0)=Y(b)=0.

There are no boundary conditions on T.
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Separation of variables

We have already solved the two boundary value problems for X
and Y. The nontrivial solutions are

X = Xm(x) = sin(ptmx), Pm = ?, me N,
. nm
Y = Yu(y) =sin(vpy), Vn = neN,
with separation constants B = —2 and C = —v2.

Since T"” — c?AT =0, andA=B+C=—(H%1+Vr21) <0,

T = Tmn(t) = Bmncos(Amnt) + By, sin(Amnt),

/ m?2  n?
)\mn:C M%n+l/,2,:C7T ?‘1‘?

These are the characteristic frequencies of the membrane.

where
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Superposition

Normal modes and Superposition

Assembling our results, we find that for any pair m,n € N we have
the normal mode

Umn(X, ¥5 t) = Xm(x) Ya(y) Tmn(t)
= sin(mx) sin(vny) (Bmn cos(Amnt) + By Sin(Amnt))

mm nm
Hm = > Vp = B Amn = C\/M%n‘i"/rzr

Superposition gives the general solution

where

u(x,y, t) = sin(fmx) sin(vny) (Bmn cos(Amnt) + By sin(Amnt)) .
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Superposition

Remarks:

@ Note that the normal modes:

o oscillate spatially with frequency p, in the x-direction,
# oscillate spatially with frequency v, in the y-direction,
» oscillate temporally with frequency App.

@ While pp, and v, are simply multiples of 7/a and x/b,
respectively,

Amn is not a multiple of any basic frequency.

@ We must use a double series in the general solution because m
and n are independent.
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Superposition

Initial conditions

Finally, we impose the initial conditions to determine the
coefficients By, and B;,,,. These yield

f(x,y) = u(x,y,0) ZZB nsin (—x)sm (n;Ty)

n=1m=1

g(x,y) = u(x,y,0 Z Z AmnBip sin ( ) sin (%Ty) .

n=1 m=1
These are examples of double Fourier series.
As before, we are faced with two Questions:

@ Which functions are given by double Fourier series?

@ How can we compute the coefficients in a double Fourier
series?
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Superposition

Representability

The following result partially answers the first question.

If f(x,y) is a C? function on the rectangle [0, a] x [0, b], then

f(x,y) = i i B sin (?x) sin <n_;ry> ,

n=1m=1

for appropriate B,,,.

@ To say that f(x,y) is a C? function means that f as well as
its first and second order partial derivatives are all continuous.

@ While not as general as the Fourier representation theorem,
this result is sufficient for our applications.
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Superposition

Orthogonality (again!)

The following result helps us answer the second question.

The functions

Zmn(x,y) = sin (mx> sin (n_;ry) , mneN
a

are pairwise orthogonal relative to the inner product

a b
(.8 = [ [ Flxrletey) dy o

This is easily verified using the orthogonality of the functions
sin(nmx/p) on the interval [0, p].

Daileda The 2-D wave equation



Superposition

Using the usual argument, it follows that if

f(x,y) = i i Bmn sin (?x) sin (n%y) )

n=1m=1

then

a prb
oy | N Zunly)dy
Zom Zomy [ [P )
/ / Zinn(x,y)” dy dx
0 JO

= % /Oa/ob f(x,y)sin (%x) sin (%Ty) dy dx.

So, we can finally write down the complete solution to our original
problem.

an =
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Superposition

Conclusion

Suppose that f(x,y) and g(x,y) are C? functions on the rectangle
[0,a] x [0, b]. The solution to the vibrating membrane problem is
given by u(x,y,t) =

Z Z sin(mx) sin(vny) (Bmn cos(Amnt) + Brp sin(Amnt))

n=1 m=1

where Um = %, Vp = %, )‘mn = C‘/:U’?n —+ I/,21, and
4 a b
By = —/ / f(x,y)sin(umx)sin(vny) dy dx,
ab o Jo
4 a b
B}, = m/o /0 g(x,y)sin(umx)sin(vny) dy dx.
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Examples

Example
A 2 x 3 rectangular membrane has c = 6. If we deform it to have
shape given by

f(x,y) =xy(2 = x)(3 - y),

keep its edges fixed, and release it at t = 0, find an expression that
gives the shape of the membrane for t > 0.

-
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Examples

We must compute the coefficients B, and By,,. Since
g(x,y) = 0 we immediately have

B, =0.

We also have

Bmn = // xy(2 —x)(3 — y)sin (—x) sm(n?jry) dy dx

= g x(2 — x)sin (n; ) dx/3 y(3— y)sm(n;ry) dy
_ §< 7r3m3)m+1)> ( 4(1 7r§;31)n+1)>

576 (14 (C)m (L (—)H)

~ 46 m3n3 ’
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Examples

The coefficients A, are given by

2 2
Amn = 67 mT + % =7mvV/9m? + 4n2.

Assembling all of these pieces yields

u(xoy. t _57622 < (14 (—=1)™1)(1 + (—1)"*) .in (%x)

m3n3

n=1 m=1

X sin (%y) cos (77\/ 9m? + 4n? t)) )
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Examples

Suppose in the previous example we also impose an initial velocity
given by g(x,y) = sin2wx. Find an expression that gives the shape
of the membrane for t > 0.

Since we have the same initial shape, B, don't change. We only
need to find B}, and add the appropriate terms to the previous
solution.

Using Amn computed above, we have

*

2 23 . /mm . /nm
an = ng—zwA A SIn(27TX) sin (7X> sin (?y) d_y dx
2 2 . /mm 5 /nm
— 3>7r\/9m—2W/0 sin(2mx) sin (TX) dx/0 sin (?y> dy.

The first integral is zero unless m = 4, i.e. and By, = 0 for m # 4.
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Examples

Evaluating the second integral, we have

B 1 3(1+ (=)™ 14 (-1t
M 300/36 + n2 nm 2036 + n2

So the velocity dependent term of the solution is
(x,y,t ZZansm fmx)sin (vpy) sin (Amnt)

m=1n=1
(mTy> sin (271\/ 36 + n2t> )

)n+1

_sin 27TX) Z
= v 36 + n?

If we let uy(x, y,t) denote the solution to the first example, the
complete solution here is

U(vav t) = Ul(X,y, t) + u2(x,y, t)'
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