The two-dimensional heat equation

Ryan C. Daileda

Trinity University

Partial Differential Equations
March 6, 2014

Physical motivation

Goal: Model heat flow in a two-dimensional object (thin plate).
Set up: Represent the plate by a region in the $x y$-plane and let

$$
\begin{aligned}
& u(x, y, t)= \text { temperature of plate at position }(x, y) \text { and } \\
& \text { time } t .
\end{aligned}
$$

For a fixed t, the height of the surface $z=u(x, y, t)$ gives the temperature of the plate at time t and position (x, y).

Under ideal assumptions (e.g. uniform density, uniform specific heat, perfect insulation along faces, no internal heat sources etc.) one can show that u satisfies the two dimensional heat equation

$$
u_{t}=c^{2} \nabla^{2} u=c^{2}\left(u_{x x}+u_{y y}\right)
$$

For now we assume:

- The plate is rectangular, represented by $R=[0, a] \times[0, b]$.

- The plate is imparted with some initial temperature:

$$
u(x, y, 0)=f(x, y), \quad(x, y) \in R
$$

- The edges of the plate are held at zero degrees:

$$
\begin{array}{ll}
u(0, y, t)=u(a, y, t)=0, & 0 \leq y \leq b, t>0 \\
u(x, 0, t)=u(x, b, t)=0, & 0 \leq x \leq a, t>0
\end{array}
$$

Separation of variables

Assuming that $u(x, y, t)=X(x) Y(y) T(t)$, and proceeding as we did with the 2-D wave equation, we find that

$$
\begin{aligned}
& X^{\prime \prime}-B X=0, \quad X(0)=X(a)=0 \\
& Y^{\prime \prime}-C Y=0, \quad Y(0)=Y(b)=0 \\
& T^{\prime}-c^{2}(B+C) T=0
\end{aligned}
$$

We have already solved the first two of these problems:

$$
\begin{array}{lll}
X=X_{m}(x)=\sin \left(\mu_{m} x\right), & \mu_{m}=\frac{m \pi}{a}, & B=-\mu_{m}^{2} \\
Y=Y_{n}(y)=\sin \left(\nu_{n} y\right), & \nu_{n}=\frac{n \pi}{b}, & C=-\nu_{n}^{2},
\end{array}
$$

for $m, n \in \mathbb{N}$. It then follows that

$$
T=T_{m n}(t)=A_{m n} e^{-\lambda_{m n}^{2} t}, \quad \lambda_{m n}=c \sqrt{\mu_{m}^{2}+\nu_{n}^{2}}=c \pi \sqrt{\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}} .
$$

Superposition

Assembling these results, we find that for any pair $m, n \geq 1$ we have the normal mode
$u_{m n}(x, y, t)=X_{m}(x) Y_{n}(y) T_{m n}(t)=A_{m n} \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) e^{-\lambda_{m n}^{2} t}$.
The principle of superposition gives the general solution

$$
u(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) e^{-\lambda_{m m}^{2} t} .
$$

The initial condition requires that

$$
f(x, y)=u(x, y, 0)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{m n} \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right),
$$

which is just the double Fourier series for $f(x, y)$.

Conclusion

Theorem

Suppose that $f(x, y)$ is a C^{2} function on the rectangle $[0, a] \times[0, b]$. The solution to the heat equation with homogeneous Dirichlet boundary conditions and initial condition $f(x, y)$ is

$$
u(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) e^{-\lambda_{m n}^{2} t}
$$

where $\mu_{m}=\frac{m \pi}{a}, \nu_{n}=\frac{n \pi}{b}, \lambda_{m n}=c \sqrt{\mu_{m}^{2}+\nu_{n}^{2}}$, and

$$
A_{m n}=\frac{4}{a b} \int_{0}^{a} \int_{0}^{b} f(x, y) \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) d y d x
$$

Example

A 2×2 square plate with $c=1 / 3$ is heated in such a way that the temperature in the lower half is 50, while the temperature in the upper half is 0 . After that, it is insulated laterally, and the temperature at its edges is held at 0 . Find an expression that gives the temperature in the plate for $t>0$.

We must solve the heat problem above with $a=b=2$ and

$$
f(x, y)= \begin{cases}50 & \text { if } y \leq 1 \\ 0 & \text { if } y>1\end{cases}
$$

The coefficients in the solution are

$$
\begin{aligned}
A_{m n} & =\frac{4}{2 \cdot 2} \int_{0}^{2} \int_{0}^{2} f(x, y) \sin \left(\frac{m \pi}{2} x\right) \sin \left(\frac{n \pi}{2} y\right) d y d x \\
& =50 \int_{0}^{2} \sin \left(\frac{m \pi}{2} x\right) d x \int_{0}^{1} \sin \left(\frac{n \pi}{2} y\right) d y
\end{aligned}
$$

$$
\begin{aligned}
& =50\left(\frac{2\left(1+(-1)^{m+1}\right)}{\pi m}\right)\left(\frac{2\left(1-\cos \frac{n \pi}{2}\right)}{\pi n}\right) \\
& =\frac{200}{\pi^{2}} \frac{\left(1+(-1)^{m+1}\right)\left(1-\cos \frac{n \pi}{2}\right)}{m n}
\end{aligned}
$$

Since $\lambda_{m n}=\frac{\pi}{3} \sqrt{\frac{m^{2}}{4}+\frac{n^{2}}{4}}=\frac{\pi}{6} \sqrt{m^{2}+n^{2}}$, the solution is

$$
\begin{aligned}
u(x, y, t)= & \frac{200}{\pi^{2}} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(\frac{\left(1+(-1)^{m+1}\right)\left(1-\cos \frac{n \pi}{2}\right)}{m n} \sin \left(\frac{m \pi}{2} x\right)\right. \\
& \left.\times \sin \left(\frac{n \pi}{2} y\right) e^{-\pi^{2}\left(m^{2}+n^{2}\right) t / 36}\right) .
\end{aligned}
$$

