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Recall: Sturm-Liouville problems

Definition: A (second order) Sturm-Liouville (S-L) problem
consists of

A Sturm-Liouville equation on an interval:

(p(x)y ′)′ + (q(x) + λr(x))y = 0, a < x < b,

together with

Boundary conditions, i.e. specified behavior of y at x = a and
x = b.

Definition: A function y 6≡ 0 that solves an S-L problem is called
an eigenfunction, and the corresponding value of λ is called its
eigenvalue.
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Recall: Inner products of eigenfunctions

Proposition

If (yj , λj), (yk , λk) are eigenfunction/eigenvalue pairs for an S-L
problem on the interval [a, b] and λj 6= λk , then their inner product
with respect to the weight function r(x) is

〈yj , yk〉 =
∫ b

a

yj(x)yk(x)r(x) dx

=
p(x)

(

y ′k(x)yj (x)− y ′j (x)yk(x)
)

λj − λk

∣
∣
∣
∣
∣

b

a

.

Remark: Frequently the boundary conditions imply that the RHS
is zero, i.e. eigenfunctions with distinct eigenvalues are orthogonal.
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Recall: Regularity

An S-L problem is called regular if:

The boundary conditions are of the form

c1y(a) + c2y
′(a) = 0,

d1y(b) + d2y
′(b) = 0,

p, q and r satisfy certain regularity conditions on [a, b].

Theorem

The eigenvalues of a regular S-L problem on [a, b] form an
increasing sequence of real numbers λ1 < λ2 < λ3 < · · · → ∞.

Eigenfunctions corresponding to distinct eigenvalues are orthogonal
on [a, b] with respect to the weight r(x).

Moreover, the eigenfunction yn corresponding to λn is unique (up
to a scalar multiple), and has exactly n − 1 zeros in the interval
a < x < b.
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“Fourier convergence” for S-L problems

The final property of eigenfunctions we will need regards their
“completeness.”

Theorem

Let y1, y2, y3, . . . be the eigenfunctions of a (regular) S-L problem
on [a, b]. If f is piecewise smooth on [a, b], then

f (x+) + f (x−)

2
=

∞∑

n=1

Anyn(x),

where

An =
〈f , yn〉
〈yn, yn〉

=

∫ b

a

f (x)yn(x)r(x) dx

∫ b

a

y2n (x)r(x) dx

.
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Remarks

The series
∑∞

n=1 Anyn is the eigenfunction expansion of f .

Recall that f (x) = f (x+)+f (x−)
2 anywhere f is continuous. So

the eigenfunction expansion is equal to f at most points.

Although we have only stated this result for regular S-L
problems, it frequently holds for singular problems as well.

The “original” Fourier convergence theorem provides an
example of this phenomenon (the periodic S-L problem
involved in that case is non-regular).
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The hanging chain

Consider a chain (or heavy rope, cable, etc.) of length L hanging
from a fixed point, subject to only to downward gravitational force.

x

u
Chain at rest Displaced chain

x = L

We place the chain along the (vertical) x-axis, displace the chain
from rest, and let

u(x , t) =
Horizontal deflection of chain from equilibrium
at height x and time t.
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Under ideal assumptions (e.g. planar motion, small deflection, no
energy loss due to friction or air resistance, etc.) we obtain the
boundary value problem

utt = g (xuxx + ux) , 0 < x < L, t > 0,

u(L, t) = 0, t > 0,

u(x , 0) = f (x),

ut(x , 0) = v(x),

where

f (x) is the initial shape of the chain,

v(x) is the initial (horizontal) velocity of the chain,

g is the (constant) acceleration due to gravity.
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Separation of variables

Writing u(x , t) = X (x)T (t), separation of variables (and physical
considerations) yields

T ′′ + λ2gT = 0, t > 0,

xX ′′ + X ′ + λ2X = 0, 0 < x < L,

X (0) finite, X (L) = 0.

The ODE for X can be rewritten as

(xX ′)′ + λ2X = 0,

yielding a S-L problem (with p(x) = x , q(x) = 0, r(x) = 1, and
parameter λ2).

Note: Although this S-L problem is non-regular, the stated
conditions guarantee orthogonality of eigenfunctions!
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To find the eigenfunctions, substitute s = 2
√
x to get

s2
d2X

ds2
+ s

dX

ds
+ λ2s2X = 0,

X (0) finite, X (2
√
L) = 0,

the parametric Bessel equation of order 0. Therefore

λ = λn =
αn

2
√
L

X (s) = Xn(s) = J0

(
αns

2
√
L

)

,

where αn is the nth positive zero of J0. Since s = 2
√
x

X (x) = Xn(x) = J0

(

αn

√
x

L

)

.
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The general solution

Since the ODE for T is T ′′ + λ2gT = 0,

T (t) = Tn(t) = An cos (
√
gλnt) + Bn sin (

√
gλnt)

= An cos

(√
g

L

αnt

2

)

+ Bn sin

(√
g

L

αnt

2

)

,

and superposition gives the general solution

u(x , t) =
∞∑

n=1

Xn(x)Tn(t)

=

∞∑

n=1

J0

(

αn

√
x

L

)(

An cos

(√
g

L

αnt

2

)

+ Bn sin

(√
g

L

αnt

2

))

.

The initial conditions will yield eigenfunction expansions.
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The initial shape condition requires that

f (x) = u(x , 0) =

∞∑

n=1

An J0

(

αn

√
x

L

)

︸ ︷︷ ︸

Xn(x)

.

According to S-L theory, this means that

An =
〈f ,Xn〉
〈Xn,Xn〉

=

∫ L

0 f (x)J0
(
αn

√
x
L

)
dx

∫ L

0 J20
(
αn

√
x
L

)
dx

=
1

L J21 (αn)

∫ L

0
f (x)J0

(

αn

√
x

L

)

dx .

Setting ut(x , 0) = v(x) and using similar reasoning yields

Bn =
2

αnJ
2
1 (αn)

√
gL

∫ L

0
v(x)J0

(

αn

√
x

L

)

dx .
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Example

A 1 meter long chain is suspended at one end. If its lower end is
pulled 10cm to the right and then released, find an expression for
the shape of the chain at any later time.

We have L = 1, g = 9.8, v(x) ≡ 0 and

1

0.1

x

u

f (x) =
1− x

10
.

It follows that Bn = 0 for all n.
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Furthermore

An =
1

J21 (αn)

∫ 1

0

1− x

10
J0
(
αn

√
x
)
dx

︸ ︷︷ ︸

sub. u=αn

√
x

=
1

5α2
nJ

2
1 (αn)

∫ αn

0

(

1− u2

α2
n

)

J0(u)u du =
1

5α2
nJ

2
1 (αn)

2J2(αn)

=
2

5α2
nJ

2
1 (αn)

(
2

αn

J1(αn)

)

=
4

5α3
nJ1(αn)

.

Hence the shape of the chain is given by

u(x , t) =
4

5

∞∑

n=1

1

α3
nJ1(αn)

J0
(
αn

√
x
)
cos

(√
9.8αnt

2

)

.
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The spherical Dirichlet problem
Spherical coordinates and the spherical Laplacian

Recall: The spherical coordinates of P = (x , y , z) are

z

y

x

r

θ

ϕ

P

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,

r2 = x2 + y2 + z2.

One can also show that for a function u(x , y , z):

∇2u = uxx+uyy+uzz = urr+
2

r
ur+

1

r2
(
uθθ + cot(θ)uθ + csc2(θ)uφφ

)
.
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Goal: Determine the steady state temperature in a solid ball of
radius a, given a time-independent temperature distribution on its
surface.

Set-up: Center the sphere at the origin and work in spherical
coordinates.

We assume the surface temperature (and hence the steady state)
depends only on θ (latitude), and let

u(r , θ) =
temperature in the ball at the (spherical) posi-
tion (r , θ) .

Since uφφ ≡ 0, this yields the boundary value problem

urr +
2

r
ur +

1

r2
(uθθ + cot(θ)uθ) = 0, 0 < θ < π, 0 < r < a,

u(a, θ) = f (θ), 0 ≤ θ ≤ π.
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Separation of variables

Writing u(r , θ) = R(r)Θ(θ), separation of variables (and physical
considerations) yields

r2R ′′ + 2rR ′ − λR = 0, 0 < r < a,

R ,R ′,R ′′, . . . finite at r = 0, a,

Θ′′ + cot(θ)Θ′ + λΘ = 0, 0 < θ < π,

Θ finite at θ = 0, π.

The ODE for R is an Euler equation with indicial equation

ρ2 + (2− 1)ρ− λ = ρ2 + ρ− λ = 0 ⇒ ρ± =
−1±

√
1 + 4λ

2
.

Since the solutions are R = c1r
ρ+ + c2r

ρ
− , finiteness of R (k)

implies c2 = 0 and

ρ+ =
−1 +

√
1 + 4λ

2
= n ∈ N0 ⇒ λ = n(n + 1).
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Setting λ = n(n + 1) and multiplying by sin(θ), the Θ problem
takes on S-L form:

(sin(θ)Θ′)′ + n(n + 1) sin(θ)Θ = 0, 0 < θ < π

Θ finite at θ = 0, π,

with p(θ) = r(θ) = sin(θ) and q(θ) = 0.

Although this problem is non-regular, the boundary conditions
guarantee orthogonality of the eigenfunctions, which have the form

Θ(θ) = Θn(θ) = Pn (cos θ) ,

where Pn is the nth Legendre polynomial (see 5.5 and 5.6):

Pn(x) =
1

2n

⌊n/2⌋
∑

m=0

(−1)m
(2n − 2m)!

m!(n −m)!(n − 2m)!
xn−2m.
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The general solution

Superposition yields the general solution

u(r , θ) =
∞∑

n=0

AnRn(r)Θn(θ) =
∞∑

n=0

Anr
nPn(cos θ).

The boundary condition requires

f (θ) = u(a, θ) =

∞∑

n=0

Ana
n Pn(cos θ)
︸ ︷︷ ︸

Θn

,

and S-L theory therefore implies that

An =
1

an
〈f ,Θn〉
〈Θn,Θn〉

=

∫ π
0 f (θ)Pn(cos θ) sin θ dθ

an
∫ π
0 P2

n (cos θ) sin θ dθ

=
2n + 1

2an

∫ π

0
f (θ)Pn(cos θ) sin θ dθ.
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Example

Find the steady state temperature in a ball of radius 1, if its
surface above z = 1/2 is kept at 50◦, and the remainder is kept at
0◦. What is the temperature at the center of the sphere?

Since a = 1 and z = a cos θ = cos θ on the surface of the sphere,
we find that the boundary temperature is

f (θ) =

{

50 if 0 ≤ θ < π/3,

0 if π/3 < θ < π.

Hence

An = 25(2n+1)

∫ π/3

0
Pn(cos θ) sin(θ) dθ

︸ ︷︷ ︸

sub. x=cos θ

= 25(2n+1)

∫ 1

1/2
Pn(x) dx .
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The coefficient An is easy to compute for any given n, e.g.

A3 = 25(2 · 3 + 1)

∫ 1

1/2

1

2

(
5x3 − 3x

)
dx =

525

128
,

although finding a general formula is quite difficult.

According to Maple

n 0 1 2 3 4 5 · · ·
An

25
2

225
8

375
16

525
128 −3375

256 −15675
1024 · · ·

so that

u(r , θ) =
25

2
+
225

8
rP1(cos θ)+

375

16
r2P2(cos θ)+

525

128
r3P3(cos θ)+· · ·
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