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The vibrating circular membrane

Goal: Model the motion of an elastic membrane stretched over a
circular frame of radius a.

Set-up: Center the membrane at the origin in the xy-plane and let

deflection of membrane from equilibrium at

u(r.0,t) = polar position (r,#) and time t.

Under ideal assumptions:
u=0 1Y

1 1
Uty = szzu = C2 <Urr + FUr + ﬁu99> ) ( =

O<r<a 0<O<2m t>0,

u(a,0,t) =0, 0<6<2m t>0.
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Separation of variables

Setting u(r,0,t) = R(r)©(0) T(t) leads to the separated boundary
value problems

PR’ + R + (\*r* — ) R =0, R(0) finite, R(a) =0,
" + 120 =0, © 27-periodic,
T+ ENT =0.

We have already seen that the second yields
©(0) = ©m(0) = Acos(mb) + Bsin(mf), = m e Ny.
For each such i, we have also seen that the solution to the first is
R(r) = Jm(Ar),

where J,, is the Bessel function of the first kind of order m.
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We still have one more boundary condition:
R(a)=0 = Jn(Aa)=0 = Aa=amn,
where ay,, is the nth positive zero of J,,. This means that

Omnp
A= )\mn = )
a

and hence R(r) = Rmn(r) = Jm (Amnr), m € Ng, n € N.

Returning to T, we finally find that

T(t) = Tmn(t) = Ccos(cAmnt) + Dsin(cAmnt).
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Normal modes

Multiplying our results together gives the separated solutions
Im (Amnr) (Acos (mB) + Bsin (mf)) (C cos (cAmnt) + Dsin (cAmnt)) .
For convenience we split these in two and write

Umn(r,0,t) = Jm(Amnr) (amn cos(mB) + by sin(mé)) cos(cAmnt),
Upmn(r, 0, t) = I(Amnr) (ap,, cos(mB) + by, , sin(mf)) sin(cAmnt).

Note that, up to scaling, rotation and a phase shift in time, these
have the form

u(r,0,t) = Jm(Amnr) cos(m) cos(cAmnt).
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Remarks

Let's compare with the normal modes of the rectangular membrane
problem:

u(x,y, t) = sin (mx) sin (vpy) cos (Amnt)
@ The functions Rmn(r) are the polar analogs of

Xm(x) =sin(pumx), Ya(x) =sin(vpy).

@ The numbers A\, = #22 are analogous to ym = "7~ and

. hm
I/n—?.

Moral: We have (essentially) replaced sine by J,, and the zeros of
sine by those of J,.

Daileda The Wave Equation on a Disk



Initial conditions and superposition

In order to completely determine the shape of the membrane at
any time we must specify the initial conditions

u(r,0,0) =f(r,0), 0<r<a, 0<6<2r (shape),
ur(r,0,0) = g(r,0), 0<r<a, 0<6<2r (velocity).

In order to meet these conditions we use superposition to build the
general solution

(r,0,t) = Z Z Im(Amnr) (@mn cos(m@) + by sin(m@)) cos(cAmnt)

m=0 n=1 umn(r,e,t)
+ZZJ Amnt) (@5, cos(mB) + b}, sin(m@)) sin(cAmnt) .
m=0 n=1
ux . (r,0,t)

Daileda The Wave Equation on a Disk



Othogonality of Bessel functions

We will see later that the functions Rpn(r) = Jm (Amnr) are
orthogonal relative to the weighted inner product

a
(r.8) = | F()a(0)r o
That is,
a
(Roms Rk :/ ) IO F e = 0 if 1 # k.
0

In addition, it can also be shown that

a 2
(Rons Ron) :/O J2 (At )r dr = %Jf,,ﬂ(amn).
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Using the orthogonality relations for Bessel and trigonometric
functions, one obtains:

Theorem

The functions

Gmn(r,0) = Jm(Amnr) cos(mb),
Ymn(r,0) = Im(Amnr) sin(mb),

(m € Ng, n € N) form a (complete) orthogonal set of functions
relative to the inner product

2w pra
<f,g>=/0 /0 f(r,0)g(r,0)rdrdo.

That is, (pmn, Gjk) = (¥mn, Yjk) = 0 for (m, n) # (j, k) and
(Gmn, jk) = 0 for all (m, n) and (j, k).

o
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Imposing the initial conditions

Setting t = 0 in the general solution gives

o0

F(r,0) = u(r,0,0) = > " Jm(Amnr) (amn cos(mB) + bmp sin(mo))
— Z Z (amn¢mn(r7 (9) + bmnd}mn(n 9)) 5
g(r,0) = u(r,0,0) = Z Z cAmndm(Amnr) (8}, cos(mb) + b}, sin(mf))

o0 o0
= Z Z (CAmnamn@mn(r,0) + cAmnbpnPmn(r, 0)),
which are called Fourier-Bessel expansions.
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Integral formulae for a,,, and b,

Using orthogonality, the usual argument gives

2w ra
_ (f, prmn) :/0 /0 £(r,0)Jm(Amnr) cos(mb) r dr df
27 ra .
<¢mna¢mn> \/0 \/0 J,2n()\mnr) COS2(m0)rdrd0

mn

for m > 0, n > 1. Using the complementary orthogonality relation,
the integral in the denominator is equal to

ma?J2(aon) if m=0,

27 a
/ cos?(mf) d / L2 (At r dr =
0 0 7Ta2 2 .
TJm+1(amn) If m 2 1.
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We finally find that

1 2w pra
= £(r.0) Jo(Nonr) r dr db,
= Ry Jy O ho)

2 /27r/a
amn = ————— f(r,0) Jm(Amnr) cos(m@) r dr dé,
T oy o ) 0 IO cos(md)

and likewise (using 1, instead)

2 27 ra
bmn = —/ / f(r,0) Jm(Amnr) sin(mé) rdrdo,
ma? S} 1 (amn) Jo Jo (r,0) I ) sin(m®)

for m,n e N.
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* *
Integral formulae for a* = and b},

The same reasoning using the Fourier-Bessel expansion of g(x,y)

yields
1 21 ra
o - ,60) Jo(Mon dr do,
don 7TCC¥0naJ12(OzOn)/(; /(; g(r ) o( 0 r)r r
2 21 ra
o ,0) Jn(Amn 0) r dr do,
Amn ﬂcamnaJ?n_H(amn)/(; /(; g(r ) ( r) COS(m )r r
2 2w pra
b 0) O 1) sin(mé) ¢ d 6.
- wcamnaJa+1(amn)/o /og(“ ) Jon(Amnr) sin(mé) r dr
for m,n € N.

This (almost) completes the statement of the general solution to
the vibrating circular membrane problem!
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Remark

Since cos0 =1 and sin0 = 0 we have

Z Z Im(Amnr) (amn cos(mB) + by, sin(mb)) cos(cAmnt)

m=0 n=1

= Z aonJdo(Aonr) cos(cAont) + Z Z as above)

m=1 n=1

m=0
@ Note that there are really no by, coefficients.

@ This is the “true form” of the first series in the solution.

Analogous comments hold for the second series.
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If f(r,0) =f(r) (i.e. fis radially symmetric), then for m # 0

21 ra
amn = ()/0 /0 f(r) Im(Amnr) cos(m@) r dr d

:(...)/Oa...dr/o%cos(me)dezo,
o

0
and b, = 0, too. That is, there are only ag, terms.

Likewise, if g is radially symmetric, then for m £ 0
afnn = b;knn =0,
and there are only aj, terms.
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Solve the vibrating membrane problem with a = c = 1 and initial
conditions

f(r,0)=1—r* g(r,0)=0.

Because g(r,6) = 0, we immediately find that a},, = b};,, = 0 for
all m and n.

Because f is radially symmetric, we only need to compute ag,.
Since a=1, Apnp = Qmp, SO

1 27 rl
aon = 7/ / f(r)Jdo(conr)r drdf
o Jo

mJ?(con)

2 1
— 2 [T Ma(aonr)r d
Jf(aon)/o( ) Jo(onr)r dr

substitute x=ag,r
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I
~ a2, aOn)/ ( %n> Jolxx e

2 Q0on 1 Q0on
= 57— / xJo(x) dx ——— x° Jo(x) dx
aOnJ (a0n) 0 On 0
A B
According to earlier results
Qon Qon
A= / XJo(X) dx = XJ1(X) = OéOnJl(OZOn)y
0 0

Qon

Qon
B = / X% Jo(x) dx = x®J1(x) — 4x* Jo(x) + 8x3 J3(x)
0 0

= OzgnJl(aon) — 4-(18".]2(0[0,7) + 8048,,.]3(0(0,7).
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It follows that

Oz%an(aon) aOnJI (aon)

aon =

9

1
Qop

so that finally

Jo(aonr) cos(agnt).

(r.0,1) i8 agntz(aon) — 2J3(con))

n—=1 aOnJl (Oéon)

Remark: This solution can easily be implemented in Maple, since
the command
BesselJZeros(m,n)

will compute o, numerically.
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