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The vibrating circular membrane

Goal: Model the motion of an elastic membrane stretched over a
circular frame of radius a.

Set-up: Center the membrane at the origin in the xy -plane and let

u(r , θ, t) =
deflection of membrane from equilibrium at
polar position (r , θ) and time t.

Under ideal assumptions:
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,

0 < r < a, 0 < θ < 2π, t > 0,

u(a, θ, t) = 0, 0 ≤ θ ≤ 2π, t > 0.
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Separation of variables

Setting u(r , θ, t) = R(r)Θ(θ)T (t) leads to the separated boundary
value problems

r2R ′′ + rR ′ +
(
λ2r2 − µ2

)
R = 0, R(0) finite, R(a) = 0,

Θ′′ + µ2Θ = 0, Θ 2π-periodic,

T ′′ + c2λ2T = 0.

We have already seen that the second yields

Θ(θ) = Θm(θ) = A cos (mθ) + B sin (mθ) , µ = m ∈ N0.

For each such µ, we have also seen that the solution to the first is

R(r) = Jm(λr),

where Jm is the Bessel function of the first kind of order m.
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We still have one more boundary condition:

R(a) = 0 ⇒ Jm(λa) = 0 ⇒ λa = αmn,

where αmn is the nth positive zero of Jm. This means that

λ = λmn =
αmn

a
,

and hence R(r) = Rmn(r) = Jm (λmnr) , m ∈ N0, n ∈ N.

Returning to T , we finally find that

T (t) = Tmn(t) = C cos (cλmnt) + D sin (cλmnt) .
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Normal modes

Multiplying our results together gives the separated solutions

Jm (λmnr) (A cos (mθ) + B sin (mθ)) (C cos (cλmnt) +D sin (cλmnt)) .

For convenience we split these in two and write

umn(r , θ, t) = Jm(λmnr) (amn cos(mθ) + bmn sin(mθ)) cos(cλmnt),

u∗mn(r , θ, t) = Jm(λmnr) (a
∗

mn cos(mθ) + b∗mn sin(mθ)) sin(cλmnt).

Note that, up to scaling, rotation and a phase shift in time, these
have the form

u(r , θ, t) = Jm(λmnr) cos(mθ) cos(cλmnt).
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Remarks

Let’s compare with the normal modes of the rectangular membrane
problem:

u(x , y , t) = sin (µmx) sin (νny) cos (λmnt)

The functions Rmn(r) are the polar analogs of

Xm(x) = sin (µmx) , Yn(x) = sin (νny) .

The numbers λmn = αmn

a
are analogous to µm = mπ

a
and

νn = nπ
b
.

Moral: We have (essentially) replaced sine by Jm and the zeros of
sine by those of Jm.
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Initial conditions and superposition

In order to completely determine the shape of the membrane at
any time we must specify the initial conditions

u(r , θ, 0) = f (r , θ), 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π (shape),

ut(r , θ, 0) = g(r , θ), 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π (velocity).

In order to meet these conditions we use superposition to build the
general solution

u(r , θ, t) =

∞∑

m=0

∞∑

n=1

Jm(λmnr) (amn cos(mθ) + bmn sin(mθ)) cos(cλmnt)
︸ ︷︷ ︸

umn(r ,θ,t)

+
∞∑

m=0

∞∑

n=1

Jm(λmnr) (a
∗

mn cos(mθ) + b∗mn sin(mθ)) sin(cλmnt)
︸ ︷︷ ︸

u∗mn(r ,θ,t)

.
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Othogonality of Bessel functions

We will see later that the functions Rmn(r) = Jm (λmnr) are
orthogonal relative to the weighted inner product

〈f , g〉 =

∫ a

0
f (r)g(r)r dr .

That is,

〈Rmn,Rmk〉 =

∫ a

0
Jm(λmnr) Jm(λmk r) r dr = 0 if n 6= k .

In addition, it can also be shown that

〈Rmn,Rmn〉 =

∫ a

0
J2m(λmnr)r dr =

a2

2
J2m+1(αmn).
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Using the orthogonality relations for Bessel and trigonometric
functions, one obtains:

Theorem

The functions

φmn(r , θ) = Jm(λmnr) cos(mθ),

ψmn(r , θ) = Jm(λmnr) sin(mθ),

(m ∈ N0, n ∈ N) form a (complete) orthogonal set of functions
relative to the inner product

〈f , g〉 =

∫ 2π

0

∫ a

0
f (r , θ)g(r , θ)r dr dθ.

That is, 〈φmn, φjk〉 = 〈ψmn, ψjk〉 = 0 for (m, n) 6= (j , k) and
〈φmn, ψjk〉 = 0 for all (m, n) and (j , k).
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Imposing the initial conditions

Setting t = 0 in the general solution gives

f (r , θ) = u(r , θ, 0) =
∞∑

m=0

∞∑

n=1

Jm(λmnr) (amn cos(mθ) + bmn sin(mθ))

=

∞∑

m=0

∞∑

n=1

(amnφmn(r , θ) + bmnψmn(r , θ)) ,

g(r , θ) = ut(r , θ, 0) =

∞∑

m=0

∞∑

n=1

cλmnJm(λmnr) (a
∗

mn cos(mθ) + b∗mn sin(mθ))

=
∞∑

m=0

∞∑

n=1

(cλmna
∗

mnφmn(r , θ) + cλmnb
∗

mnψmn(r , θ)) ,

which are called Fourier-Bessel expansions.
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Integral formulae for amn and bmn

Using orthogonality, the usual argument gives

amn =
〈f , φmn〉

〈φmn, φmn〉
=

∫ 2π

0

∫ a

0
f (r , θ)Jm(λmnr) cos(mθ) r dr dθ

∫ 2π

0

∫ a

0
J2m(λmnr) cos

2(mθ) r dr dθ

.

for m ≥ 0, n ≥ 1. Using the complementary orthogonality relation,
the integral in the denominator is equal to

∫ 2π

0
cos2(mθ) dθ

∫ a

0
J2m(λmnr) r dr =







πa2J21 (α0n) if m = 0,

πa2

2
J2m+1(αmn) if m ≥ 1.
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We finally find that

a0n =
1

πa2J21 (α0n)

∫ 2π

0

∫ a

0
f (r , θ) J0(λ0nr) r dr dθ,

amn =
2

πa2J2m+1(αmn)

∫ 2π

0

∫ a

0
f (r , θ) Jm(λmnr) cos(mθ) r dr dθ,

and likewise (using ψmn instead)

bmn =
2

πa2J2m+1(αmn)

∫ 2π

0

∫ a

0
f (r , θ) Jm(λmnr) sin(mθ) r dr dθ,

for m, n ∈ N.
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Integral formulae for a∗mn and b
∗
mn

The same reasoning using the Fourier-Bessel expansion of g(x , y)
yields

a∗0n =
1

πcα0naJ
2
1 (α0n)

∫ 2π

0

∫ a

0
g(r , θ) J0(λ0nr) r dr dθ,

a∗mn =
2

πcαmnaJ
2
m+1(αmn)

∫ 2π

0

∫ a

0
g(r , θ) Jm(λmnr) cos(mθ) r dr dθ,

b∗mn =
2

πcαmnaJ
2
m+1(αmn)

∫ 2π

0

∫ a

0
g(r , θ) Jm(λmnr) sin(mθ) r dr dθ,

for m, n ∈ N.

This (almost) completes the statement of the general solution to
the vibrating circular membrane problem!
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Remark

Since cos 0 = 1 and sin 0 = 0 we have

∞∑

m=0

∞∑

n=1

Jm(λmnr) (amn cos(mθ) + bmn sin(mθ)) cos(cλmnt)

=

∞∑

n=1

a0nJ0(λ0nr) cos(cλ0nt)

︸ ︷︷ ︸

m=0

+

∞∑

m=1

∞∑

n=1

(as above)

Note that there are really no b0n coefficients.

This is the “true form” of the first series in the solution.

Analogous comments hold for the second series.
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Remark

If f (r , θ) = f (r) (i.e. f is radially symmetric), then for m 6= 0

amn = (· · · )

∫ 2π

0

∫ a

0
f (r) Jm(λmnr) cos(mθ) r dr dθ

= (· · · )

∫ a

0
· · · dr

∫ 2π

0
cos(mθ) dθ

︸ ︷︷ ︸

0

= 0,

and bmn = 0, too. That is, there are only a0n terms.

Likewise, if g is radially symmetric, then for m 6= 0

a∗mn = b∗mn = 0,

and there are only a∗0n terms.
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Example

Solve the vibrating membrane problem with a = c = 1 and initial
conditions

f (r , θ) = 1− r4, g(r , θ) = 0.

Because g(r , θ) = 0, we immediately find that a∗mn = b∗mn = 0 for
all m and n.

Because f is radially symmetric, we only need to compute a0n.
Since a = 1, λmn = αmn, so

a0n =
1

πJ21 (α0n)

∫ 2π

0

∫ 1

0
f (r)J0(α0nr)r drdθ

=
2

J21 (α0n)

∫ 1

0
(1− r4)J0(α0nr)r dr

︸ ︷︷ ︸

substitute x=α0nr
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=
2

α2
0nJ

2
1 (α0n)

∫ α0n

0

(

1−
x4

α4
0n

)

J0(x)x dx

=
2

α2
0nJ

2
1 (α0n)







∫ α0n

0
xJ0(x) dx

︸ ︷︷ ︸

A

−
1

α4
0n

∫ α0n

0
x5J0(x) dx

︸ ︷︷ ︸

B






.

According to earlier results

A =

∫ α0n

0
xJ0(x) dx = xJ1(x)

∣
∣
∣
∣

α0n

0

= α0nJ1(α0n),

B =

∫ α0n

0
x5J0(x) dx = x5J1(x)− 4x4J2(x) + 8x3J3(x)

∣
∣
∣
∣

α0n

0

= α5
0nJ1(α0n)− 4α4

0nJ2(α0n) + 8α3
0nJ3(α0n).
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It follows that

a0n =
2

α2
0nJ

2
1 (α0n)

(

A−
1

α4
0n

B

)

=
8 (α0nJ2(α0n)− 2J3(α0n))

α3
0nJ

2
1 (α0n)

,

so that finally

u(r , θ, t) =

∞∑

n=1

8 (α0nJ2(α0n)− 2J3(α0n))

α3
0nJ

2
1 (α0n)

J0(α0nr) cos(α0nt).

Remark: This solution can easily be implemented in Maple, since
the command

BesselJZeros(m,n)

will compute αmn numerically.
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