
Partial Differential Equations Assignment 1
Spring 2015 Due January 22

Exercise 1. Show that u(x, y) = x3− 3xy2 and u(x, y) = ex
2−y2 cos 2xy are solutions of the

two-dimensional Laplace equation ∆u = 0.

Exercise 2. Show that
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1√

4πc2t
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)
is a solution of the one-dimensional heat equation ut = c2uxx.

Exercise 3. Show that u(r, θ) = ln r and u(r, θ) = r cos θ are both solutions to the PDE
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uθθ = 0.

Exercise 4. Let f be a differentiable function of one variable. Show that

u(x, t) = f(x− vt)

is a solution to the one-dimensional transport equation

∂u
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+ v

∂u
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= 0.

Use this fact to find the solution that satisfies the initial condition

u(x, 0) =
1

x2 + 1
.

[Suggestion: Set t = 0 above and solve for f .]


