Exercise 1. If u is a function of x and t with continuous second order partial derivatives, and we set

$$
\alpha=a x+b t, \quad \beta=m x+n t
$$

with $a n-b m \neq 0$, use the chain rule to show that

$$
u_{t t}=b^{2} u_{\alpha \alpha}+2 b n u_{\alpha \beta}+n^{2} u_{\beta \beta} .
$$

Exercise 2. Show that if $u(x, t)=F(x+c t)+G(x-c t)$ satisfies

$$
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x), \quad \text { for all } x \in \mathbb{R}
$$

then

$$
\binom{F(x)}{G(x)}=\frac{1}{2 c}\left(\begin{array}{cc}
c & 1 \\
c & -1
\end{array}\right)\binom{f(x)}{\int g(x) d x}
$$

Exercise 3. Continuing the notation of the preceding exercise, if $G_{1}(x)$ and $G_{2}(x)$ are both antiderivatives of $g(x)$, show that $u(x, t)$ does not depend on which one we choose to represent $\int g(x) d x$. [Suggestion: Write down an equation relating G_{1} and G_{2}.]

Exercise 4. Use exercises 2 and 3 to help you solve the 1-D wave equation (on the domain $\mathbb{R} \times[0, \infty))$ subject to the given initial data.
a. $\quad u(x, 0)=f(x), u_{t}(x, 0)=0$
b. $\quad u(x, 0)=\frac{1}{1+x^{2}}, u_{t}(x, 0)=-2 x e^{-x^{2}}$
c. $u(x, 0)=e^{-x^{2}}, u_{t}(x, 0)=\frac{x}{\left(1+x^{2}\right)^{2}}$

Exercise 5. Suppose that $u(x, t)$ and $v(x, t)$ have continuous second order partial derivatives and are related through the equations

$$
\frac{\partial u}{\partial t}=-A \frac{\partial v}{\partial x} \text { and } \frac{\partial v}{\partial t}=-B \frac{\partial u}{\partial x}
$$

for some positive constants A and B. Show that u and v are both solutions of the 1-D wave equation with $c=\sqrt{A B}$.

