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Solving the transport equation

Goal: Determine every function u(x , t) that solves

∂u

∂t
+ v

∂u

∂x
= 0,

where v is a fixed constant.
Idea: Perform a linear change of variables to eliminate one partial
derivative:

α = ax + bt,

β = cx + dt,

where:

x , t : original independent variables,

α, β : new independent variables,

a, b, c , d : constants to be chosen “conveniently,”

must satisfy ad − bc 6= 0.
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We use the multivariable chain rule to convert to α and β
derivatives:

α

t

u

x

β

tx

∂u

∂x
=

∂u

∂α

∂α

∂x
+

∂u

∂β

∂β

∂x
= a

∂u

∂α
+ c

∂u

∂β
,

∂u

∂t
=

∂u

∂α

∂α

∂t
+

∂u

∂β

∂β

∂t
= b

∂u

∂α
+ d

∂u

∂β
.

Hence

∂u

∂t
+ v

∂u

∂x
=

(

b
∂u

∂α
+ d

∂u

∂β

)

+ v

(

a
∂u

∂α
+ c

∂u

∂β

)

= (b + av)
∂u

∂α
+ (d + cv)

∂u

∂β
.
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Choosing a = 0, b = 1, c = 1, d = −v , the original PDE becomes

∂u

∂α
= 0.

This tells us that

u = f (β) = f (cx + dt) = f (x − vt)

for any (differentiable) function f .

Theorem

The general solution to the transport equation
∂u

∂t
+ v

∂u

∂x
= 0 is

given by

u(x , t) = f (x − vt),

where f is any differentiable function of one variable.
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Example

Solve the transport equation
∂u

∂t
+ 3

∂u

∂x
= 0 given the initial

condition
u(x , 0) = xe−x2 , −∞ < x < ∞.

Solution: We know that the general solution is given by

u(x , t) = f (x − 3t).

To find f we use the initial condition:

f (x) = f (x − 3 · 0) = u(x , 0) = xe−x2.

Thus
u(x , t) = (x − 3t)e−(x−3t)2 .

Daileda First Order PDEs



Linear Change of Variables The Method of Characteristics Summary

Interpreting the solutions of the transport equation

In three dimensions (xtu-space):

The graph of the solution is the surface obtained by
translating u = f (x) along the vector v = 〈v , 1〉;
The solution is constant along lines (in the xt-plane) parallel
to v.
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If we plot the solution u(x , t) = f (x − vt) in the xu-plane, and
animate t:

f (x) = u(x , 0) is the initial condition (concentration);

u(x , t) is a traveling wave with velocity v and shape given by
u = f (x).
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In general: a linear change of variables can always be used to
convert a PDE of the form

A
∂u

∂x
+ B

∂u

∂y
= C (x , y , u)

into an “ODE,” i.e. a PDE containing only one partial derivative.

Example

Solve 5
∂u

∂t
+

∂u

∂x
= x given the initial condition

u(x , 0) = sin 2πx , −∞ < x < ∞.

Solution: As above, we perform the linear change of variables

α = ax + bt,

β = cx + dt.
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We find that

5
∂u

∂t
+

∂u

∂x
= 5

(

b
∂u

∂α
+ d

∂u

∂β

)

+

(

a
∂u

∂α
+ c

∂u

∂β

)

= (a + 5b)
∂u

∂α
+ (c + 5d)

∂u

∂β
.

We choose a = 1, b = 0, c = 5, d = −1. Note that

ad − bc = −1 6= 0,

α = ax + bt = x ,

β = cx + dt = 5x − t.

So the PDE (in the variables α, β) becomes

∂u

∂α
= α.
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Integrating with respect to α yields

u =
α2

2
+ f (β) =

x2

2
+ f (5x − t).

The initial condition tells us that

x2

2
+ f (5x) = u(x , 0) = sin 2πx .

If we replace x with x/5, we get

f (x) = sin
2πx

5
−

x2

50
.
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Therefore

u(x , t) =
x2

2
+ f (5x − t)

=
x2

2
+ sin

2π(5x − t)

5
−

(5x − t)2

50

=
xt

5
−

t2

50
+ sin

2π(5x − t)

5
.

Remark: There are an infinite number of choices for a, b, c , d
that will “correctly” eliminate either α or β from the PDE.
Although they may appear different, the solutions obtained are
always independent of the choice made.
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Characteristic curves

Goal: Develop a technique to solve the (somewhat more general)
first order PDE

∂u

∂x
+ p(x , y)

∂u

∂y
= 0. (1)

Idea: Look for characteristic curves in the xy -plane along which
the solution u satisfies an ODE.

Consider u along a curve y = y(x). On this curve we have

d

dx
u(x , y(x)) =

∂u

∂x
+

∂u

∂y

dy

dx
. (2)
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Comparing (1) and (2), if we require

dy

dx
= p(x , y), (3)

then the PDE becomes the ODE

d

dx
u(x , y(x)) = 0. (4)

These are the characteristic ODEs of the original PDE.

If we express the general solution to (3) in the form ϕ(x , y) = C ,
each value of C gives a characteristic curve.

Equation (4) says that u is constant along the characteristic
curves, so that

u(x , y) = f (C ) = f (ϕ(x , y)).
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The Method of Characteristics - Special Case

Summarizing the above we have:

Theorem

The general solution to

∂u

∂x
+ p(x , y)

∂u

∂y
= 0

is given by

u(x , y) = f (ϕ(x , y)),

where:

ϕ(x , y) = C gives the general solution to
dy

dx
= p(x , y), and

f is any differentiable function of one variable.
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Example

Solve 2y
∂u

∂x
+ (3x2 − 1)

∂u

∂y
= 0 by the method of characteristics.

Solution: We first divide the PDE by 2y obtaining

∂u

∂x
+

3x2 − 1

2y
︸ ︷︷ ︸

p(x ,y)

∂u

∂y
= 0.

So we need to solve
dy

dx
=

3x2 − 1

2y
.

This is separable:
2y dy = 3x2 − 1 dx .
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∫

2y dy =

∫

3x2 − 1 dx

y2 = x3 − x + C .

We can put this in the form y2 − x3 + x = C and hence

u(x , y) = f
(
y2 − x3 + x

)
.

Remark: This technique can be generalized to PDEs of the form

A(x , y)
∂u

∂x
+ B(x , y)

∂u

∂y
= C (x , y , u).
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Example

Solve
∂u

∂x
+ x

∂u

∂y
= u.

As above, along a curve y = y(x) we have

d

dx
u(x , y(x)) =

∂u

∂x
+

∂u

∂y

dy

dx
.

Comparison with the original PDE gives the characteristic ODEs

dy

dx
= x ,

d

dx
u(x , y(x)) = u(x , y(x)).
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The first tells us that

y =
x2

2
+ y(0),

and the second that 1

u(x , y(x)) = u(0, y(0))ex = f (y(0))ex .

Combining these gives

u(x , y) = f

(

y −
x2

2

)

ex .

1Recall that the solution to the ODE
dw

dx
= kw is w = Ce

kx . Since

w(0) = Ce
0 = C , we can write this as w = w(0)ekx .

Daileda First Order PDEs



Linear Change of Variables The Method of Characteristics Summary

Summary

Consider a first order PDE of the form

A(x , y)
∂u

∂x
+ B(x , y)

∂u

∂y
= C (x , y , u). (5)

When A(x , y) and B(x , y) are constants, a linear change of
variables can be used to convert (5) into an “ODE.”

In general, the method of characteristics yields a system of
ODEs equivalent to (5).

In principle, these ODEs can always be solved completely to give
the general solution to (5).
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