Periodic functions and Fourier series

Ryan C. Daileda

Trinity University

Partial Differential Equations January 29, 2015

Goal: Given a function $f(x)$, write it as a linear combination of cosines and sines of increasing frequency, e.g.

$$
\begin{aligned}
f(x) & =a_{0}+a_{1} \cos (x)+a_{2} \cos (2 x)+\cdots+b_{1} \sin (x)+b_{2} \sin (2 x)+\cdots \\
& =a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right) .
\end{aligned}
$$

Important Questions:

1. Which f have such a Fourier series expansion?

Difficult to answer completely. We will give sufficient conditions only.
2. Given f, how can we determine $a_{0}, a_{1}, a_{2}, \ldots, b_{1}, b_{2}, \ldots$? We will give explicit formulae. These involve the ideas of inner product and orthogonality.

Periodicity

Definition: A function $f(x)$ is T-periodic if

$$
f(x+T)=f(x) \text { for all } x \in \mathbb{R}
$$

Remarks:

- If $f(x)$ is T-periodic, then $f(x+n T)=f(x)$ for any $n \in \mathbb{Z}$.
- The graph of a T-periodic function $f(x)$ repeats every T units along the x-axis.
- To give a formula for a T-periodic function, state that " $f(x)=\cdots$ for $x_{0} \leq x<x_{0}+T$ " and then either.
* $f(x+T)=f(x)$ for all x; OR
* $f(x)=f\left(x-T\left\lfloor\frac{x-x_{0}}{T}\right\rfloor\right)$ for all x.

Examples

1. $\sin (x)$ and $\cos (x)$ are 2π-periodic.
2. $\tan (x)$ is π-periodic.
3. If $f(x)$ is T-periodic, then:

- $f(x)$ is also $n T$-periodic for any $n \in \mathbb{Z}$.
- $f(k x)$ is T / k-periodic.

4. For $n \in \mathbb{N}, \cos (n k x)$ and $\sin (n k x)$ are:

- $2 \pi / n k$-periodic.
- simultaneously $2 \pi / k$-periodic.

5. If $f(x)$ is T-periodic, then

$$
\int_{a}^{a+T} f(x) d x=\int_{0}^{T} f(x) d x \text { for all } a .
$$

6. The 2-periodic function with graph

can be described by

$$
f(x)= \begin{cases}x & \text { if } 0<x \leq 2 \\ f(x+2) & \text { for all } x\end{cases}
$$

or

$$
f(x)=x-2\left\lfloor\frac{x}{2}\right\rfloor .
$$

7. The 1-periodic function with graph

can be described by

$$
f(x)= \begin{cases}0 & \text { if } 0<x \leq 1 / 2 \\ 2 x-1 & \text { if } 1 / 2<x \leq 1 \\ f(x+1) & \text { for all } x\end{cases}
$$

Piecewise smoothness

Definition: Given a function $f(x)$ we define

$$
f(c+)=\lim _{x \rightarrow c^{+}} f(x) \text { and } f(c-)=\lim _{x \rightarrow c^{-}} f(x) .
$$

Example: For the following function we have:

$$
\begin{aligned}
& f(0+)=0, \\
& f(0-)=-1, \\
& f(1+)=f(1)=f(1-)=1, \\
& f(2+)=2, \\
& f(2-)=1 .
\end{aligned}
$$

Remark: $f(x)$ is continuous at c iff $f(c)=f(c+)=f(c-)$.

Definition 1: We say that $f(x)$ is piecewise continuous if

- f has only finitely many discontinuities in any interval, and
- $f(c+)$ and $f(c-)$ exist for all c in the domain of f.

Definition 2: We say that $f(x)$ is piecewise smooth if f and f^{\prime} are both piecewise continuous.

Good:

Remark: A piecewise smooth function cannot have: vertical asymptotes, vertical tangents, or "strange" discontinuities.

Which functions have Fourier series?

We noted earlier that the functions

$$
\cos (n x), \sin (n x),(n \in \mathbb{N})
$$

are all 2π-periodic. It follows that if

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right),
$$

then $f(x)$ must also be 2π-periodic (linear combinations of T-periodic functions are T-periodic.)

However, 2π-periodicity alone does not guarantee that $f(x)$ has a Fourier series expansion.

But if we also require $f(x)$ to be piecewise smooth...

Existence of Fourier series

Theorem

If $f(x)$ is a piecewise smooth, 2π-periodic function, then there are (unique) Fourier coefficients $a_{0}, a_{1}, a_{2}, \ldots$ and b_{1}, b_{2}, \ldots so that

$$
\frac{f(x+)+f(x-)}{2}=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

for all x. This is called the Fourier series of $f(x)$.

Remarks:

- If f is continuous at x, then $(f(x+)+f(x-)) / 2=f(x)$. So f equals its Fourier series at "most points."
- If f is continuous everywhere, then f equals its Fourier series everywhere.

A continuous 2π-periodic function equals its Fourier series.

A discontinuous 2π-periodic piecewise smooth function...

...is almost its Fourier series.

Inner products and orthogonality in \mathbb{R}^{n}

Given vectors $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, their inner (or dot) product is

$$
\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
$$

We say that \mathbf{x} and \mathbf{y} are orthogonal if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.
Useful facts from linear algebra:

- For any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{n}$ and $a, b \in \mathbb{R}$

$$
\begin{aligned}
& \langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle, \quad\langle a \mathbf{x}+b \mathbf{y}, \mathbf{z}\rangle=a\langle\mathbf{x}, \mathbf{z}\rangle+b\langle\mathbf{y}, \mathbf{z}\rangle, \\
& \langle\mathbf{x}, \mathbf{x}\rangle>0 \text { unless } \mathbf{x}=\mathbf{0} .
\end{aligned}
$$

- A set of n orthogonal vectors in \mathbb{R}^{n} forms a basis for \mathbb{R}^{n} (an orthogonal basis).

Let $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ be orthogonal vectors in \mathbb{R}^{n}.

According to the facts above, given $\mathbf{x} \in \mathbb{R}^{n}$, there are (unique) coefficients $a_{1}, a_{2}, \ldots, a_{n}$ so that

$$
\mathbf{x}=a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+\cdots+a_{n} \mathbf{b}_{n} .
$$

We can use the inner product to help us compute these coefficients, e.g.

$$
\begin{aligned}
\left\langle\mathbf{b}_{1}, \mathbf{x}\right\rangle & =\left\langle\mathbf{b}_{1}, a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+\cdots+a_{n} \mathbf{b}_{n}\right\rangle \\
& =a_{1}\left\langle\mathbf{b}_{1}, \mathbf{b}_{1}\right\rangle+a_{2}\left\langle\mathbf{b}_{1}, \mathbf{b}_{2}\right\rangle+\cdots+a_{n}\left\langle\mathbf{b}_{1}, \mathbf{b}_{n}\right\rangle \\
& =a_{1}\left\langle\mathbf{b}_{1}, \mathbf{b}_{1}\right\rangle+0+\cdots+0,
\end{aligned}
$$

which shows $a_{1}=\left\langle\mathbf{b}_{1}, \mathbf{x}\right\rangle /\left\langle\mathbf{b}_{1}, \mathbf{b}_{1}\right\rangle$.

In general we have the following result.

Theorem

If $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ is an orthogonal basis of \mathbb{R}^{n} and $\mathbf{x} \in \mathbb{R}^{n}$, then

$$
\mathbf{x}=a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+\cdots+a_{n} \mathbf{b}_{n}
$$

where

$$
a_{i}=\frac{\left\langle\mathbf{b}_{i}, \mathbf{x}\right\rangle}{\left\langle\mathbf{b}_{i}, \mathbf{b}_{i}\right\rangle}(i=1,2, \ldots, n) .
$$

Example

Show that the vectors $\mathbf{b}_{1}=(1,0,1), \mathbf{b}_{2}=(1,1,-1)$ and $\mathbf{b}_{3}=(-1,2,1)$ form an orthogonal basis for \mathbb{R}^{3}, and express $\mathbf{x}=(1,2,3)$ in terms of this basis.

It is easy to see that $\left\langle\mathbf{b}_{1}, \mathbf{b}_{2}\right\rangle=\left\langle\mathbf{b}_{1}, \mathbf{b}_{3}\right\rangle=\left\langle\mathbf{b}_{2}, \mathbf{b}_{3}\right\rangle=0$, e.g.

$$
\left\langle\mathbf{b}_{1}, \mathbf{b}_{2}\right\rangle=1 \cdot 1+0 \cdot 1+1 \cdot(-1)=0 .
$$

The theorem tells us that the coordinates of $\mathbf{x}=(1,2,3)$ relative to this basis are

$$
\begin{aligned}
& a_{1}=\frac{\left\langle\mathbf{b}_{1}, \mathbf{x}\right\rangle}{\left\langle\mathbf{b}_{1}, \mathbf{b}_{1}\right\rangle}=\frac{1 \cdot 1+0 \cdot 2+1 \cdot 3}{1 \cdot 1+0 \cdot 0+1 \cdot 1}=2, \\
& a_{2}=\frac{\left\langle\mathbf{b}_{2}, \mathbf{x}\right\rangle}{\left\langle\mathbf{b}_{2}, \mathbf{b}_{2}\right\rangle}=\frac{1 \cdot 1+1 \cdot 2+(-1) \cdot 3}{1 \cdot 1+1 \cdot 1+(-1) \cdot(-1)}=0, \\
& a_{3}=\frac{\left\langle\mathbf{b}_{3}, \mathbf{x}\right\rangle}{\left\langle\mathbf{b}_{3}, \mathbf{b}_{3}\right\rangle}=\frac{(-1) \cdot 1+2 \cdot 2+1 \cdot 3}{(-1) \cdot(-1)+2 \cdot 2+1 \cdot 1}=1 .
\end{aligned}
$$

That is,

$$
\mathbf{x}=2 \mathbf{b}_{1}+\mathbf{b}_{3}
$$

Inner products of functions

Goal: Find an inner product of functions that will allow us to "extract" Fourier coefficients.

Definition: Given two functions $f(x)$ and $g(x)$, their inner product (on the interval $[a, b]$) is

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

Example: The inner product of x and x^{2} on $[0,1]$ is

$$
\left\langle x, x^{2}\right\rangle=\int_{0}^{1} x \cdot x^{2} d x=\left.\frac{x^{4}}{4}\right|_{0} ^{1}=\frac{1}{4}
$$

Remarks: If f, g, h are functions and c, d are constants, then:

- $\langle f, g\rangle=\langle g, f\rangle ;$
- $\langle c f+d g, h\rangle=\int_{a}^{b}(c f(x)+d g(x)) h(x) d x$

$$
\begin{aligned}
& =c \int_{a}^{b} f(x) h(x) d x+d \int_{a}^{b} g(x) h(x) d x \\
& =c\langle f, h\rangle+d\langle g, h\rangle
\end{aligned}
$$

- $\langle f, f\rangle=\int_{a}^{b} f(x)^{2} d x \geq 0$;
- $\langle f, f\rangle=0$ iff $f \equiv 0$;
- we say f and g are orthogonal on $[a, b]$ if $\langle f, g\rangle=0$.

Examples

1. The functions $1-x^{2}$ and x are orthogonal on $[-1,1]$ since

$$
\left\langle 1-x^{2}, x\right\rangle=\int_{-1}^{1}\left(1-x^{2}\right) x d x=\frac{x^{2}}{2}-\left.\frac{x^{4}}{4}\right|_{-1} ^{1}=0
$$

2. The functions $\sin x$ and $\cos x$ are orthogonal on $[-\pi, \pi]$ since

$$
\langle\sin x, \cos x\rangle=\int_{-\pi}^{\pi} \sin x \cos x d x=\left.\frac{\sin ^{2} x}{2}\right|_{-\pi} ^{\pi}=0
$$

3. More generally, for any $m, n \in \mathbb{N}_{0}$, the functions $\sin (m x)$ and $\cos (n x)$ are orthogonal on $[-\pi, \pi]$ since

$$
\langle\sin (m x), \cos (n x)\rangle=\int_{-\pi}^{\pi} \underbrace{\sin (m x) \cos (n x)}_{\text {odd }} d x=0
$$

4. For any $m, n \in \mathbb{N}_{0}$, consider $\cos (m x)$ and $\cos (n x)$ on $[-\pi, \pi]$.

$$
\begin{aligned}
\langle\cos (m x), \cos (n x)\rangle & =\int_{-\pi}^{\pi} \cos (m x) \cos (n x) d x \\
& =\frac{1}{2} \int_{-\pi}^{\pi} \cos ((m+n) x)+\cos ((m-n) x) d x \\
(m \neq n) & =\left.\frac{1}{2}\left(\frac{\sin ((m+n) x)}{m+n}+\frac{\sin ((m-n) x)}{m-n}\right)\right|_{-\pi} ^{\pi} \\
& =0
\end{aligned}
$$

since $\sin (k \pi)=0$ for $k \in \mathbb{Z}$. If $m=n$, then we have

$$
\begin{aligned}
\langle\cos (m x), \cos (m x)\rangle & =\frac{1}{2} \int_{-\pi}^{\pi} \cos (2 m x)+1 d x \\
(m \neq 0) & =\left.\frac{1}{2}\left(\frac{\sin (2 m x)}{2 m}+x\right)\right|_{-\pi} ^{\pi}=\pi
\end{aligned}
$$

Finally, if $m=n=0$, then

$$
\langle\cos (m x), \cos (m x)\rangle=\langle 1,1\rangle=\int_{-\pi}^{\pi} d x=2 \pi .
$$

We conclude that on $[-\pi, \pi]$ one has

$$
\langle\cos (m x), \cos (n x)\rangle= \begin{cases}0 & \text { if } m \neq n \\ \pi & \text { if } m=n \neq 0 \\ 2 \pi & \text { if } m=n=0\end{cases}
$$

5. Likewise, on $[-\pi, \pi]$ one can show that for $m, n \in \mathbb{N}$

$$
\langle\sin (m x), \sin (n x)\rangle= \begin{cases}0 & \text { if } m \neq n \\ \pi & \text { if } m=n\end{cases}
$$

Conclusion

Relative to the inner product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

the functions occurring in every Fourier series, namely

$$
1, \cos (x), \cos (2 x), \cos (3 x) \ldots, \sin (x), \sin (2 x), \sin (3 x), \ldots
$$

form an orthogonal set.

Moral: We can use the inner product above to "extract" Fourier coefficients via integration!

