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Transforming Fourier Series

New Fourier series from old

Recall: Given a function f(x), we can dilate/translate its graph
via multiplication/addition, as follows.

Geometric operation Mathematical implementation

Dilate along the x-axis
by a factor of a f(x/a)

Dilate along the y-axis

by a factor of b bf ()
Translat(.e (right) .along f(x — c)
the x-axis by ¢ units

Translate (up) along the F(x) +d

y-axis by d units
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Transforming Fourier Series

One has the following general principles.

If the graph of f(x) is obtained from g(x) by dilations and/or
translations, then the same operations can be used to obtain the
Fourier series of f from that of g.

o
Theorem

If f(x) is a linear combination of gi(x), g2(x), ..., &n(x), then the
Fourier series of f is the same linear combination of the Fourier
series of g1,82,---,8n-

Remarks:
@ These are both easily derived from Euler's formulas for the
Fourier coefficients.
@ These tell us that we can construct Fourier series of “new”
functions from existing series.
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Transforming Fourier Series

Use an existing series to find the Fourier series of the 2mw-periodic
function given by f(x) = x for 0 < x < 2.

The graph of f(x):

by translating both up and to the right by 7 units.
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Transforming Fourier Series

The old sawtooth wave has Fourier series

22 1)”Jrl sin nx)’

so the function f has Fourier series

I i (—1)"*Lsin(n(x — 7))

=742 Z % (sin(nx) cos(nm) — sin(nm) cos(nx))
n=1

= w+2iwsin(nx)
n=1

o i sin(nnx)
n=1
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Transforming Fourier Series
Example

Use an existing series to find the Fourier series of the 4-periodic
function satisfying

—X if —1<x<1
f(x) = . :
x—2 if1<x<3

The graph of f(x):

1
S

Vi VO VOREN

We can obtain f from the graph of an earlier 2w-periodic triangular
wave.
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ks
Earlier wave: g(x) N/\

Dilation of 2/w 2 (=) m

along both axes: &2 — R —
Translation by 1 142 (n(x—l)) o]

along both axes: &\ 72 N

We already know that the Fourier series for g is

s cos((2k + 1)x)
5__2 (2k+1)2

We simply transform it as above, and simplify.
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Transforming Fourier Series

This yields

cos((2k + 1)m(x — 1)/2)
“lr <___Z (2k +1)2 )

The cosine term inside the sum is

cos ((2/( +21)7rx B (2k42—1)7r> ~ cos <M> o (M)

Cein <(2k —1—21)7rx> i ((2k 42r 1)7r>

= (—1)"sin <M> :

So the series simplifies to
8 = (1)  [(2k+1)7mx
_P;(zkﬂy S'”( 2 ‘
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Transforming Fourier Series

Example

Use existing series to find the Fourier series of the 2m-periodic
function satisfying

0 if —1<x<0,

f(x) = .
x ifo<x<m.

The graph of f(x) (left) is the average of the sawtooth and
triangular waves shown.

Il
N[=
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Transforming Fourier Series

So, the Fourier series of f is the average of our two previous series:
1 > (=t cos((2k + 1)x)
(2 _ ZPW\AR T )
5 < 2. sin(nx) + Z 2k e
T 2 o= cos((2k +1)x) ( )"*1 _
REEP She e ) T *;fs'”(”x)'

We could combine these into one series, but it's easier to just leave
the cosine and sine series separate.
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Transforming Fourier Series

Differentiating Fourier series

Term-by-term differentiation of a series can be a useful operation,
when it is valid. The following result tells us when this is the case
with Fourier series.

Suppose f is 2w-periodic and piecewise smooth. If ' is also
piecewise smooth, and f is continuous everywhere, then the
Fourier series for f' can be obtained from that of f using
term-by-term differentiation.

Remark: This can be proven by using integration by parts in the
Euler formulas for the Fourier coefficients of '.
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Transforming Fourier Series
Example

Use an existing series to find the Fourier series of the 2mw-periodic
function satisfying

-1 if —7<x<0,

f(x) = .
1 if0 < x <.

The graph of f(x) (a square wave)

1

shows that it is the derivative of the triangular wave.

T

-2r - T 27 R/ 4
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Transforming Fourier Series

Since the triangular wave is continuous everywhere, we can
differentiate its Fourier series term-by-term to get the series for the
square wave.

m £ (2k 4+ 1)?

™
k=0

d (= 4 cos((2k + 1)x) 4 K —(2k 4 1) sin((2k 4 1)x)
dx <___Z (2k + 1)2 ) -

LR sm((2k+1)x)

2k + 1)

Warning: The hypothesis that f is continuous is extremely
important. For example, if we term-wise differentiate the Fourier
series for the discontinuous square wave (above), we get

% Z cos((2k + 1)x)
k=0

which converges (almost) nowherel



Half-range Expansions

Half-range expansions

Goal: Given a function f(x) defined for 0 < x < p, write f(x) as a
linear combination of sines and cosines.

Idea: Extend f to have period 2p, and find the Fourier series of
the resulting function.

P p Zp 3p 4p 5p
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Half-range Expansions

Sine and cosine series

We set

f, = odd 2p-periodic extension of f,

fe = even 2p-periodic extension of f.

If we expand f, as a Fourier series, it will involve only sines:
= nmx
E by, sin <—> .
n=1 p

This is the sine series expansion of f.

According to Euler's formula the Fourier coefficients are given by

1 [P 2 (P
b, = —/ fo(x)sin <ﬂ> dx = —/ f(x)sin <ﬂ> dx.
pJ_p p P Jo p

even
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Half-range Expansions

If we expand f. as a Fourier series, it will involve only cosines:
o
nmx
ap + g apcos | — .
n=1 p
This is the cosine series expansion of f.

This time Euler's formulas give

:—/ x)dx—%/opf(x)dx,

even

p
ap = 1/ fe(x) cos <ﬂ> dx = g/ f(x) cos <ﬂ> dx.
pJ p P Jo p

even

If f is piecewise smooth, both the sine and cosine series converge
f(x+)+ f(x—)
2
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Half-range Expansions

Find the sine and cosine series expansions of f(x) = 3 — x on the
interval 0 < x < 3.

Taking p = 3 in our work above, the coefficients of the sine series
are given by
3
0>

b, = %/03(3 — x)sin (ni?)x> dx
(e () ()

6
= g-ECOS(O) =

So, the sine series is
o0
6 Z 1 . <n7rx>
— —sin|—).
T n 3
n=1



Half-range Expansions

The cosine series coefficients are
3
3
0 2

13 1 x?
= — — d = — _ —
aog 3/0 3 — xdx 3 <3x >

and forn >1

if nis odd,

0 if nis even.
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Half-range Expansions

Since we can omit the terms with even n, we write n =2k +1
(k > 0) and obtain the cosine series

> nmxy 3 12 & 1 (2k + L)mx
aﬁ—;ancos(T)—§+§§mcos<ﬁ>.

Here are the graphs of f, f, and f. (over one period):

Consequently, the sine series equals f(x) for 0 < x < 3, and the
cosine series equals f(x) for 0 < x < 3.

[DETILLE] Fourier Series (Cont.)



	Transforming Fourier Series
	Half-range Expansions

