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The vibrating circular membrane

Goal: Model the motion of an elastic membrane stretched over a
circular frame of radius a.

Set-up: Center the membrane at the origin in the xy -plane and let

u(r , θ, t) =

{
deflection of membrane from equilibrium at
polar position (r , θ) and time t.

Under ideal assumptions:

Δu u  = c
x

y

a

tt
2

u=0

utt = c2∆u = c2
(

urr +
1

r
ur +

1

r2
uθθ

)

,

0 < r < a, 0 < θ < 2π, t > 0,

u(a, θ, t) = 0, 0 ≤ θ ≤ 2π, t > 0.
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Separation of variables

Setting u(r , θ, t) = R(r)Θ(θ)T (t) leads to the separated boundary
value problems

r2R ′′ + rR ′ +
(
λ2r2 − µ2

)
R = 0, R(0+) finite, R(a) = 0,

Θ′′ + µ2Θ = 0, Θ 2π-periodic,

T ′′ + c2λ2T = 0.

We have already seen that the solutions to the Θ problem are

Θ(θ) = Θm(θ) = A cos (mθ) + B sin (mθ) , µ = m ∈ N0.

So, for each m ∈ N0 it remains to solve the ODE boundary value
problem

r2R ′′ + rR ′ +
(
λ2r2 −m2

)
R = 0, R(0+) finite, R(a) = 0.
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Solving for R

Case 1: λ = 0. This is an Euler equation, and the only solution to
the BVP is R ≡ 0 (HW).

Case 2: λ > 0. The changes of variables R(r) = y(x), x = λr
lead to

x2y ′′ + xy ′ + (x2 −m2)y = 0
︸ ︷︷ ︸

Bessel’s equation of order m

, y(0+) finite, y(λa) = 0.

Remarks.

The solutions to Bessel’s equation have been well-studied.

However, in order to understand them we need to introduce a
new technique for solving second order ODEs.

We will spend the next several lectures studying the Power
Series and Frobenius Methods.
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Definition of a power series

A power series [PS] (centered at a) is a function of the form

f (x) =
∞∑

n=0

an(x − a)n = a0 + a1(x − a) + a2(x − a)2 + · · · ,

where a0, a1, a2, a3, . . . are (real) constants called its coefficients.
Examples.

1.
∞∑

n=0

xn = 1 + x + x2 + x3 + · · · is a PS centered at a = 0.

2.

∞∑

n=0

xn

n!
= 1 + x +

x2

2
+

x3

6
+ · · · is a PS centered at a = 0.

3.

∞∑

n=1

(−1)n+1(x − 1)n

n
= (x − 1)− (x − 1)2

2
+

(x − 1)3

3
− · · ·

is a PS centered at a = 1.
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Convergence of power series
For what x does a power series converge?

Theorem

Given a PS f (x) =

∞∑

n=1

an(x − a)n, there is an R ∈ [0,∞] (its

radius of convergence) so that

f (x) converges absolutely if |x − a| < R and

f (x) diverges if |x − a| > R.

The series may or may not converge when |x − a| = R.

Corollary

Every PS centered at a converges on an interval (its interval of
convergence) centered at a of radius equal to R. A PS may or may
not converge at the endpoints of its interval of convergence.
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Remarks

Consider the PS

f (x) =

∞∑

n=0

an(x − a)n.

x

a a+Ra-R
R R

conv.div. div.??

Using the ratio/root tests, one can show that

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= L OR lim

n→∞

n
√

|an| = L ⇒ R =
1

L
.

Warnings:

In some cases these limits may not exist, so they can’t be
used in every situation.
Unless L = 0,∞, these limits never provide information about
the behavior of a PS at the endpoints.
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Example

Find the interval of convergence of

f (x) =

∞∑

n=0

xn = 1 + x + x2 + x3 + x4 + · · ·

Using the root test alluded to above,

lim
n→∞

n
√

|an| = lim
n→∞

n
√
1 = 1,

so that the radius is R = 1/1 = 1. Since the center is a = 0, we
must test the endpoints x = a± R = ±1 directly.

When x = ±1, then nth term in the series is

(±1)n 6→ 0 as n → ∞ ⇒ the series diverges.

Hence the interval of convergence is (−1, 1).
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Example

Determine the interval of convergence of the series

∞∑

n=1

(−1)n+1(x − 1)n

2nn
=

x − 1

2
− (x − 1)2

8
+

(x − 1)3

24
− · · · .

Taking the nth roots of the coefficients gives

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

(−1)n+1

2nn

∣
∣
∣
∣
= lim

n→∞

1

2 n
√
n
=

1

2
.

So the radius of convergence is R = 1/(1/2) = 2.

The series is centered at a = 1, so the endpoints
x = a± R = − 1, 3 must be checked directly.
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When x = −1 the series becomes

∞∑

n=1

(−1)n+1(−2)n

2nn
= −

∞∑

n=1

1

n
,

which is divergent (the negative of the harmonic series).

When x = 3 the series instead becomes

∞∑

n=1

(−1)n+12n

2nn
=

∞∑

n=1

(−1)n+1

n
,

which converges by the alternating series test.

We conclude that the interval of convergence is (−1, 3].
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Example

Determine the interval of convergence of the series

∞∑

n=0

xn

n!
= 1 + x +

x2

2
+

x3

6
+ · · · .

Computing the ratios of the coefficients gives

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

1/(n + 1)!

1/n!
= lim

n→∞

n!

(n + 1)!

= lim
n→∞

n!

(n + 1)n!
= lim

n→∞

1

n + 1
= 0.

So the radius of convergence is R = 1/0 = ∞, and the interval of
convergence is (−∞,∞) = R.
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Remarks

As with Fourier series, one can visualize the convergence of a
power series by plotting

sN(x) =
N∑

n=0

an(x − a)n (the Nth partial sum)

and letting N → ∞.

In fact, the partial sums converge uniformly to the PS on any
closed subinterval of the interval of convergence that omits
the endpoints.
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Arithmetic of power series

Given two PS

f (x) =
∞∑

n=0

an(x − a)n with radius R1 > 0,

g(x) =

∞∑

n=0

bn(x − a)n with radius R2 > 0,

then their “formal” sum and product

(f + g)(x) =
∞∑

n=0

(an + bn)(x − a)n,

(f · g)(x) =
∞∑

n=0

(a0bn + a1bn−1 + a2bn−2 + · · ·+ anb0) (x − a)n,

both converge with radii R ≥ min{R1,R2}.
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Remarks

Since constants can be regarded as power series with infinite
radius (i.e. α = α+ 0(x − a) + 0(x − a)2 + · · · ), we can make
analogous statements for linear combinations αf (x) + βg(x).

If g(a) 6= 0 (i.e. b0 6= 0), one can also formally compute f /g
as a power series using “polynomial” long division,and it will
have a positive radius of convergence.

A function equal to a power series centered at a with positive
radius of convergence is called analytic at a.

According to the previous slide, linear combinations, products
and (appropriate) quotients of analytic functions are also
analytic. Many familiar functions from Calculus are analytic
(almost) everywhere.
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First examples of analytic functions

Recall from Calc. II that
∞∑

n=0

xn =
1

1− x
for |x | < 1.

According to the previous result

1

1 + x
=

1

1− (−x)
=

∞∑

n=0

(−x)n =

∞∑

n=0

(−1)nxn for |x | < 1.

Since |x | < 1 implies that |x2| < 1 we also have

1

1 + x2
=

∞∑

n=0

(−1)n(x2)n =

∞∑

n=0

(−1)nx2n for |x | < 1.

Therefore 1
1−x

, 1
1+x

and 1
1+x2

are all analytic at a = 0.
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Calculus of power series

Being analytic makes a function extremely “nice.” The following
result quantifies this statement.

Theorem

Every power series converges to a differentiable (hence integrable)
function inside its interval of convergence. Moreover

f (x) =

∞∑

n=0

an(x − a)n

has radius R







⇒
f ′(x) =

∞∑

n=1

nan(x − a)n−1,

∫

f (x) dx =

∞∑

n=0

an(x − a)n+1

n + 1
+ C ,

and both have radius R as well.
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Remarks

According to the previous result:

A PS can be differentiated and integrated term-by-term
without changing its radius of convergence.

Warning: differentiation and integration of a PS may change
convergence behavior at the endpoints of the interval of
convergence.

Derivatives and antiderivatives of an analytic function are
themselves analytic. This yields the following result.

Corollary

If f is analytic at a, then f is infinitely differentiable in a
neighborhood of a, and all of its derivatives are analytic at a as
well, with a common radius of convergence.
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Example

Show that for every x ∈ R,

ex =
∞∑

n=0

xn

n!
.

Hence ex is analytic at a = 0.

We have already seen that R = ∞, so the PS converges for all x .
Moreover, according to the theorem above, we have

d

dx

(
∞∑

n=0

xn

n!

)

=

∞∑

n=1

nxn−1

n!
=

∞∑

n=1

xn−1

(n − 1)!
=

∞∑

m=0

xm

m!
,

where we have used the index substitution m = n− 1.
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Since the index m is a “dummy” variable, we may replace it with n
again. We have then shown that

y =
∞∑

n=0

xn

n!
⇒ y ′ = y ⇒ y = Cex

for some C . To solve for C we plug in x = 0:

1 + 0 + 0 + 0 + · · · = y(0) = Ce0 ⇒ C = 1.

Thus,
∞∑

n=0

xn

n!
= ex

for every x ∈ R.
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Example

Show that

arctan x =

∞∑

n=0

(−1)nx2n+1

2n + 1

for |x | < 1. Hence arctan x is analytic at a = 0.

If |x | < 1, then we have seen that

d

dx
arctan x =

1

1 + x2
=

∞∑

n=0

(−1)nx2n.

Integrating both sides then gives

arctan x =

∞∑

n=0

(−1)nx2n+1

2n + 1
+ C for |x | < 1.

Setting x = 0 yields C = 0, and we’re finished.
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Example

Show that 1
(1−x)2

is analytic at a = 0 by finding its power series

representation centered there.

For |x | < 1 we have

1

(1− x)2
=

d

dx

1

1− x
=

d

dx

∞∑

n=0

xn =

∞∑

n=1

nxn−1 =

∞∑

m=0

(m + 1)xm,

where we have made the change of index m = n − 1 in the final
equality.

This expresses 1
(1−x)2

as a PS centered at a = 0, proving it is

analytic there.
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Example

Show that 1
1+x

is analytic at a = 2 by finding its power series
representation centered there.

We have

1

1 + x
=

1

3 + (x − 2)
=

1

3
· 1

1−
(
− x−2

3

) =
1

3

∞∑

n=0

(

−x − 2

3

)n

,

provided | − (x − 2)/3| < 1 ⇔ |x − 2| < 3. The final sum is a
power series:

1

3

∞∑

n=0

(

−x − 2

3

)n

=
1

3

∞∑

n=0

(−1)n(x − 2)n

3n
=

∞∑

n=0

(−1)n(x − 2)n

3n+1
.

Since 1
1+x

equals a power series centered at a = 2, it is analytic
there.
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As a preview of the Power Series Method, let’s consider the
following.

Example

Show that y =
∞∑

n=0

(−1)n2nn!

(2n + 1)!
x2n+1 solves the ODE y ′ + xy = 1

for x ∈ R.

That the given series has R = ∞ is left as HW. Consequently, for
any x we have

y ′ + xy =
∞∑

n=0

(−1)n2nn!(2n + 1)

(2n + 1)!
x2n + x

∞∑

n=0

(−1)n2nn!

(2n + 1)!
x2n+1

=

∞∑

n=0

(−1)n2nn!

(2n)!
x2n +

∞∑

n=0

(−1)n2nn!

(2n + 1)!
x2n+2

︸ ︷︷ ︸

sub. n=m−1
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=

∞∑

n=0

(−1)n2nn!

(2n)!
x2n +

∞∑

m=1

(−1)m−12m−1(m − 1)!

(2m − 1)!
x2m

︸ ︷︷ ︸

replace “dummy” m with n

= 1 +

∞∑

n=1

(
(−1)n2nn!

(2n)!
+

(−1)n−12n−1(n − 1)!

(2n − 1)!

)

x2n

= 1 +
∞∑

n=1

(
(−1)n2nn(n − 1)!

(2n)(2n − 1)!
+

(−1)n−12n−1(n − 1)!

(2n − 1)!

)

x2n

= 1 +

∞∑

n=1

(
(−1)n2n−1(n − 1)!

(2n − 1)!
+

(−1)n−12n−1(n − 1)!

(2n − 1)!

)

x2n

= 1 +

∞∑

n=1

0 · x2n = 1,

which is what we needed to show.
Daileda Power Series



Introduction Power series: definition and convergence Power series: arithmetic and calculus

Uniqueness of power series coefficients

By repeatedly differentiating and plugging in x = a, one can prove:

Theorem

If f (x) =

∞∑

n=0

an(x − a)n has positive radius of convergence, then

an =
f (n)(a)

n!
for all n ≥ 0.

This immediately yields:

Corollary (Identity Principle)

If
∞∑

n=0

an(x − a)n =
∞∑

n=0

bn(x − a)n on an open interval containing

a, then an = bn for all n ≥ 0.
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Remarks

This says that if f is analytic at a, there is only one power
series (centered at a) that it can equal.

This result also tells us that f is analytic at a if and only if

f (x) =

∞∑

n=0

f (n)(a)

n!
(x − a)n

︸ ︷︷ ︸

Taylor series of f at a

for all x near a.

Even f is known a priori to be analytic at a, one can
frequently use algebraic manipulations of existing PS to avoid
computing the Taylor series directly (as in earlier examples).
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