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Introduction

The vibrating circular membrane

Goal: Model the motion of an elastic membrane stretched over a
circular frame of radius a.

Set-up: Center the membrane at the origin in the xy-plane and let

u(r,0,t) = deflection of membrane from equilibrium at
7)™ \ polar position (r,6) and time t.

Under ideal assumptions:

1 1

U = c2Au = c? <Urr+_ur+_2U60)>
r r

O<r<a 0<@O<2m t>0,

u(a,0,t) =0, 0<6<2m t>0.
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Introduction
Separation of variables

Setting u(r,0,t) = R(r)©(0) T(t) leads to the separated boundary
value problems

rPR" + R + (\2r* — ) R =0, R(0+) finite, R(a)=0,
©" + 1’0 =0, © 2r-periodic,
T+ PNT =0.
We have already seen that the solutions to the © problem are
©(0) = ©p(0) = Acos(mf) + Bsin(md), p=m e No.

So, for each m € Ny it remains to solve the ODE boundary value
problem

rPR" + R + (\°r* — m*) R =0, R(0+) finite, R(a)=0.
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Introduction

Solving for R

Case 1: A = 0. This is an Euler equation, and the only solution to
the BVP is R =0 (HW).

Case 2: \ > 0. The changes of variables R(r) = y(x), x = Ar
lead to
2y + xy' + (x> = m¥)y =0, y(0+) finite, y(Aa)=0.

~
Bessel's equation of order m

Remarks.
@ The solutions to Bessel's equation have been well-studied.

@ However, in order to understand them we need to introduce a
new technique for solving second order ODEs.

@ We will spend the next several lectures studying the Power
Series and Frobenius Methods.
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Power series: definition and convergence

Definition of a power series

A power series [PS] (centered at a) is a function of the form
o0
f(x):Zan(x_a)n:30+31(X—a)—|—a2(x—a)2_|_... ,
n=0

where ag, a1, a2, as, ... are (real) constants called its coefficients.
Examples.

o
1. Zx":1+x+x2+x3—|—--- is a PS centered at a = 0.

n=0
0 XN 2 X3 .
2. Zﬁ:1+x+7+€+'” is a PS centered at a = 0.
n=0
— (—1)"(x—1)" (x-1?  (x-1)°
) =(x—1)— —
3 nz_:l . (x—1) 5 + 3

is a PS centered at a = 1.
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Power series: definition and convergence

Convergence of power series

For what x does a power series converge?

Theorem

Given a PS f(x) = Z an(x — a)", there is an R € [0, 00] (its
n=1

radius of convergence) so that
@ f(x) converges absolutely if |x — a| < R and
o f(x) diverges if [x — a| > R.

The series may or may not converge when |x — a| = R.

A\

Corollary

Every PS centered at a converges on an interval (its interval of
convergence) centered at a of radius equal to R. A PS may or may
not converge at the endpoints of its interval of convergence.

-
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Power series: definition and convergence

Remarks

Consider the PS fdiv. ? f conv. ? fdiv. x
00 a-R a a+R g
F(x) =3 an(x — a)". —R——R—
n=0

Using the ratio/root tests, one can show that

. an—|—1 . . n - _1
A ey | =8OR A Vlal=t = R=g
Warnings:

@ In some cases these limits may not exist, so they can't be
used in every situation.

@ Unless L = 0, 0o, these limits never provide information about
the behavior of a PS at the endpoints.
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Power series: definition and convergence

Find the interval of convergence of

o
f(x):Zx":1+x+x2+x3+x4+'-'
n=0

Using the root test alluded to above,
lim « = lim v1=1
rn, {/lan] = Jim, V=1,

so that the radius is R = 1/1 = 1. Since the center is a =0, we
must test the endpoints x = a & R = %1 directly.

When x = 41, then nth term in the series is

n

(£1)" A0 as n— oo = the series diverges.

Hence the interval of convergence is (—1,1).
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Power series: definition and convergence

Determine the interval of convergence of the series

(1) (x—1)"  x—-1 (x—1)2  (x—1)3

21n 2 8 24
Taking the nth roots of the coefficients gives

1 1

=\ = —.

(_]_)n—i—l
2"n

H n _ H n
e Vlenl = i,

So the radius of convergence is R =1/(1/2) = 2.

The series is centered at a = 1, so the endpoints
x=a+ R= —1,3 must be checked directly.
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Power series: definition and convergence

When x = —1 the series becomes
I R
n=1

which is divergent (the negative of the harmonic series).

When x = 3 the series instead becomes

& 1 n+12n
SopE s

which converges by the alternating series test.

1)n+1

We conclude that the interval of convergence is (—1, 3].
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Power series: definition and convergence

Determine the interval of convergence of the series

. x" x2 X3

E —=lldxd—I—dbooo
n! 2 6

n=0

Computing the ratios of the coefficients gives

1 1)1 !
fim |2t iy M DU et
n—oo | ap n—o00 ]_/n' n—o0 (n + ]_)'
i nl i
Tt (n+D)nl ntsent1

So the radius of convergence is R = 1/0 = oo, and the interval of
convergence is (—o00,00) = R.

[BETI[LEY Power Series



Power series: definition and convergence

Remarks

@ As with Fourier series, one can visualize the convergence of a
power series by plotting

N

sn(x) = Zan(x —a)"  (the Nth partial sum)
n=0

and letting N — oc.

@ In fact, the partial sums converge uniformly to the PS on any
closed subinterval of the interval of convergence that omits
the endpoints.
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Power series: arithmetic and calculus

Arithmetic of power series

Given two PS
f(x) = Z an(x —a)" with radius Ry >0,
n=0

g(x) = Z bn(x —a)" with radius R» >0,
n=0

then their “formal” sum and product

oo

(f +8)(x) = _(an + bn)(x — a)",

3
Il
o

M8

(f-g)(x) =

(aob,, 4+ aiby,_1+ab,_>+ -+ anbo) (X — a)",

3
Il
o

both converge with radii R > min{Ry, R>}.



Power series: arithmetic and calculus

Remarks

@ Since constants can be regarded as power series with infinite
radius (i.e. « = o+ 0(x — a) + 0(x — a)? + - - - ), we can make
analogous statements for linear combinations af(x) + Sg(x).

o If g(a) # 0 (i.e. by # 0), one can also formally compute /g
as a power series using “polynomial” long division,and it will
have a positive radius of convergence.

@ A function equal to a power series centered at a with positive
radius of convergence is called analytic at a.

@ According to the previous slide, linear combinations, products
and (appropriate) quotients of analytic functions are also
analytic. Many familiar functions from Calculus are analytic
(almost) everywhere.
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Power series: arithmetic and calculus

First examples of analytic functions

@ Recall from Calc. Il that
o0
1
Zx" =—— for |x| <Ll
1—x
n=0

@ According to the previous result

o0 oo

1 1
Trx = T (o - ()= T for x| <.
n=0 n=0
@ Since |x| < 1 implies that |x?| < 1 we also have
1 o0 o0
— 2\n __ 2
T2 D (=1)"0A)" =D (1) for x| < 1.
n=0 n=0
Therefore ﬁ 1%( and HXQ are all analytic at a = 0.
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Power series: arithmetic and calculus

Calculus of power series

Being analytic makes a function extremely “nice.” The following
result quantifies this statement.

Theorem

Every power series converges to a differentiable (hence integrable)
function inside its interval of convergence. Moreover

00 f'(x) = Znanx—a -1
:Zan(x—a)”
=
n=0

has radius R - an(x — a)n+1
f(x)dx = — 1+ C
/ (x) dx nz_;) ool +

and both have radius R as well.
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Power series: arithmetic and calculus

Remarks

According to the previous result:

@ A PS can be differentiated and integrated term-by-term
without changing its radius of convergence.

@ Warning: differentiation and integration of a PS may change
convergence behavior at the endpoints of the interval of
convergence.

@ Derivatives and antiderivatives of an analytic function are
themselves analytic. This yields the following result.

If f is analytic at a, then f is infinitely differentiable in a
neighborhood of a, and all of its derivatives are analytic at a as
well, with a common radius of convergence.
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Power series: arithmetic and calculus

Show that for every x € R,

Hence e* is analytic at a = 0.

We have already seen that R = oo, so the PS converges for all x.
Moreover, according to the theorem above, we have

dx nl ] nl n—1) m!’
n=0 n=1 n=1 ( ) m=0

where we have used the index substitution m = n — 1.
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Power series: arithmetic and calculus

Since the index mis a “"dummy” variable, we may replace it with n
again. We have then shown that

[ee] n
X
y:E F — y’:y = y:CeX
n=0

for some C. To solve for C we plug in x = 0:

14+04+0+0+--=y(0)=C = C=1
Thus,
[e'e) Xn_ .
=
n=0

for every x € R.
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Power series: arithmetic and calculus

Show that

) (_l)nXZn—i-l

arctan x = Z -~
pard 2n+1

for |x| < 1. Hence arctan x is analytic at a = 0.
If x| < 1, then we have seen that
o0

d 1 n_2n
dx 1+x2 Z(_l) X

— arctanx =
n=0

Integrating both sides then gives

o (_1)nX2n+1
arCtanX:ZTH—I—C fOI’ |X|<1

n=0

Setting x = 0 yields C = 0, and we're finished.
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Power series: arithmetic and calculus

Show that ﬁ is analytic at a = 0 by finding its power series

representation centered there.

For |x| < 1 we have

1 d 1 d . n - n—1 - m
mzal_xzazx = nx :Z(m-l-l)x,
n=0 n=1 m=0

where we have made the change of index m = n — 1 in the final
equality.

This expresses ﬁ as a PS centered at a = 0, proving it is
analytic there.
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Power series: arithmetic and calculus

Show that :H—Lx is analytic at a = 2 by finding its power series
representation centered there.

We have
1 1 1 1 _1§: x—2\"
1+x 3+(x-2) 3 1-(-%2) 34 3 ’

provided | — (x —2)/3] < 1< |x — 2| < 3. The final sum is a
power series:

1 —2\" 1 & (—1)"(x - > —2)"
2 (50) = e
n=0 n=0 n=0

Since T4 equals a power series centered at a = 2, it is analytic
there.
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Power series: arithmetic and calculus

As a preview of the Power Series Method, let's consider the
following.

—1)m27p]
(2n+1)!

Show that y = Z x?"1 solves the ODE y' + xy =1

foerR

That the given series has R = oo is left as HW. Consequently, for
any x we have

—1)"2"nl(2n + 1) 20 )"2"n! 2nt1
vy = Z (2n + 1) X Z 2n+1

_Z 1) 2"n! X2 +i (=1)"2" ”!X2n+2
— (2n)! Z (2n+1)!
sub. n=m—1
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Power series: arithmetic and calculus

S G VAN TIN e G ) L A Gl VLT
Z Tonr O 7 Z 2m— 1)! x
=0 =1
replace “dummy” m with n
o n n n—1rn—1
B 2 n| (=1)" 2" (n = 1)1\ »,,
=1+ ( (2n — 1) x
n=1
o0 n n n—1~on—1
2"n(n—1)! (=)™ 2" H(n—-1)I\ ,
=1 n
+Z::1< @men—11 (2n — 1)] x
> n n— 1 n—1on—1
2 S (=1) 12 — 1)
_ Z (n—1)! 4 (=1) (n—1) 20
2n—1)| (2n —1)!

:1+ZO-X2”:
n=1

which is what we needed to show.
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Power series: arithmetic and calculus

Uniqueness of power series coefficients

By repeatedly differentiating and plugging in x = a, one can prove:

o0
If f(x) = Z an(x — a)" has positive radius of convergence, then
n=0
£(n)
a, = (2) for all n> 0.
n!

This immediately yields:

Corollary (ldentity Principle)

(e.o]

Ifz ap(x —a)" = Z b,(x — a)" on an open interval containing
a, then an = b, foralln>0

[BETI[LEY Power Series



Power series: arithmetic and calculus

Remarks

@ This says that if f is analytic at a, there is only one power
series (centered at a) that it can equal.

@ This result also tells us that f is analytic at a if and only if

> £(n)
f(x)= Z n|(a) (x —a)" for all x near a.
n=0 ’

Taylor series of f at a

@ Even f is known a priori to be analytic at a, one can
frequently use algebraic manipulations of existing PS to avoid
computing the Taylor series directly (as in earlier examples).
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