Complete Series Solution of the Vibrating Circular Membrane Problem

R. C. Daileda

Trinity University

Partial Differential Equations
April 14, 2015
Normal modes of the vibrating circular membrane

Recall that for \(m \in \mathbb{N}_0, n \in \mathbb{N} \) these have the form

\[
J_m(\lambda_{mn}r) \left(A \cos (m\theta) + B \sin (m\theta) \right) \left(C \cos (c\lambda_{mn}t) + D \sin (c\lambda_{mn}t) \right),
\]

where \(\lambda_{mn} = \alpha_{mn}/a \), \(a > 0 \) is the radius of the membrane, and

\[
\alpha_{m1} < \alpha_{m2} < \alpha_{m3} < \cdots
\]

are the positive zeros of \(J_m(x) \). For convenience we set

\[
u_{mn}(r, \theta, t) = J_m(\lambda_{mn}r) (a_{mn} \cos(m\theta) + b_{mn} \sin(m\theta)) \cos(c\lambda_{mn}t),
\]

\[
u^*_{mn}(r, \theta, t) = J_m(\lambda_{mn}r) (a^*_{mn} \cos(m\theta) + b^*_{mn} \sin(m\theta)) \sin(c\lambda_{mn}t),
\]

and use superposition to construct the general solution

\[
u(r, \theta, t) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \nu_{mn}(r, \theta, t) + \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \nu^*_{mn}(r, \theta, t).
\]
In order to completely determine the shape of the membrane at any time we must specify the *initial conditions*

\[u(r, \theta, 0) = f(r, \theta), \quad 0 \leq r \leq a, \quad 0 \leq \theta \leq 2\pi \text{ (shape)}, \]
\[u_t(r, \theta, 0) = g(r, \theta), \quad 0 \leq r \leq a, \quad 0 \leq \theta \leq 2\pi \text{ (velocity)}. \]

Setting \(t = 0 \) in the general solution, we find that this requires

\[
f(r, \theta) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_m(\lambda_{mn}r) (a_{mn} \cos(m\theta) + b_{mn} \sin(m\theta))
\]
\[
g(r, \theta) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} c\lambda_{mn} J_m(\lambda_{mn}r) (a_{mn}^* \cos(m\theta) + b_{mn}^* \sin(m\theta))
\]

which are called *Fourier-Bessel expansions*.

Daileda

Solution of the Wave Equation on a Disk
We will see later that the functions $R_{mn}(r) = J_m(\lambda_{mn}r)$ are orthogonal relative to the \textit{weighted inner product}

\[
\langle f, g \rangle = \int_0^a f(r)g(r)r \, dr.
\]

That is,

\[
\langle R_{mn}, R_{mk} \rangle = \int_0^a J_m(\lambda_{mn}r) J_m(\lambda_{mk}r) r \, dr = 0 \quad \text{if } n \neq k.
\]

In addition, it can also be shown that

\[
\langle R_{mn}, R_{mn} \rangle = \int_0^a J_m^2(\lambda_{mn}r) r \, dr = \frac{a^2}{2} J_{m+1}^2(\alpha_{mn}).
\]
Using the orthogonality relations for Bessel and trigonometric functions, one obtains:

Theorem

The functions

\[\phi_{mn}(r, \theta) = J_m(\lambda_{mn} r) \cos(m\theta), \]
\[\psi_{mn}(r, \theta) = J_m(\lambda_{mn} r) \sin(m\theta), \]

\((m \in \mathbb{N}_0, n \in \mathbb{N})\) form a (complete) orthogonal set of functions relative to the inner product

\[\langle f, g \rangle = \int_0^{2\pi} \int_0^a f(r, \theta)g(r, \theta)r \, dr \, d\theta. \]

That is, \(\langle \phi_{mn}, \phi_{jk} \rangle = \langle \psi_{mn}, \psi_{jk} \rangle = 0 \) for \((m, n) \neq (j, k) \) and \(\langle \phi_{mn}, \psi_{jk} \rangle = 0 \) for all \((m, n) \) and \((j, k) \).
Since our initial membrane shape condition is

\[f(r, \theta) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} (a_{mn}\phi_{mn}(r, \theta) + b_{mn}\psi_{mn}(r, \theta)), \]

the usual orthogonality argument gives

\[a_{mn} = \frac{\langle f, \phi_{mn} \rangle}{\langle \phi_{mn}, \phi_{mn} \rangle} = \frac{\int_0^{2\pi} \int_0^a f(r, \theta)J_m(\lambda_{mn}r) \cos(m\theta) r \, dr \, d\theta}{\int_0^{2\pi} \int_0^a J_m^2(\lambda_{mn}r) \cos^2(m\theta) r \, dr \, d\theta}, \]

\[b_{mn} = \frac{\langle f, \psi_{mn} \rangle}{\langle \psi_{mn}, \psi_{mn} \rangle} = \frac{\int_0^{2\pi} \int_0^a f(r, \theta)J_m(\lambda_{mn}r) \sin(m\theta) r \, dr \, d\theta}{\int_0^{2\pi} \int_0^a J_m^2(\lambda_{mn}r) \sin^2(m\theta) r \, dr \, d\theta}, \]

for \(m \geq 0, \ n \geq 1. \)
The integrals in the denominators can be evaluated explicitly:

\[
\int_{0}^{2\pi} \int_{0}^{a} J_{m}^{2}(\lambda_{mn}r) \cos^{2}(m\theta) \ r \ dr \ d\theta
\]

\[
= \int_{0}^{2\pi} \cos^{2}(m\theta) \ d\theta \int_{0}^{a} J_{m}^{2}(\lambda_{mn}r) \ r \ dr
\]

\[
= \begin{cases}
\frac{\pi a^{2}}{2} J_{1}^{2}(\alpha_{0n}) & \text{if } m = 0, \\
\frac{\pi a^{2}}{2} J_{m+1}^{2}(\alpha_{mn}) & \text{if } m \geq 1;
\end{cases}
\]

and likewise

\[
\int_{0}^{2\pi} \int_{0}^{a} J_{m}^{2}(\lambda_{mn}r) \sin^{2}(m\theta) \ r \ dr \ d\theta = \frac{\pi a^{2}}{2} J_{m+1}^{2}(\alpha_{mn}),
\]

for \(m \geq 1 \).
We conclude that

\[a_{0n} = \frac{1}{\pi a^2 J_1^2(\alpha_{0n})} \int_0^{2\pi} \int_0^a f(r, \theta) J_0(\lambda_{0n}r) r \, dr \, d\theta, \]

\[a_{mn} = \frac{2}{\pi a^2 J_{m+1}^2(\alpha_{mn})} \int_0^{2\pi} \int_0^a f(r, \theta) J_m(\lambda_{mn}r) \cos(m\theta) r \, dr \, d\theta, \]

\[b_{mn} = \frac{2}{\pi a^2 J_{m+1}^2(\alpha_{mn})} \int_0^{2\pi} \int_0^a f(r, \theta) J_m(\lambda_{mn}r) \sin(m\theta) r \, dr \, d\theta, \]

for \(m, n \in \mathbb{N} \). Finally, recall the initial velocity condition

\[g(r, \theta) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} (c\lambda_{mn}a^*_\phi_{mn}(r, \theta) + c\lambda_{mn}b^*_\psi_{mn}(r, \theta)). \]
Integral formulae for a_{mn}^* and b_{mn}^*

The same line of reasoning as above yields

$$a_{0n}^* = \frac{1}{\pi \alpha_{0n}\alpha_1} \int_0^{2\pi} \int_0^a g(r, \theta) J_0(\lambda_{0n}r) r \, dr \, d\theta,$$

$$a_{mn}^* = \frac{2}{\pi \alpha_{mn}\alpha_{m+1}} \int_0^{2\pi} \int_0^a g(r, \theta) J_m(\lambda_{mn}r) \cos(m\theta) r \, dr \, d\theta,$$

$$b_{mn}^* = \frac{2}{\pi \alpha_{mn}\alpha_{m+1}} \int_0^{2\pi} \int_0^a g(r, \theta) J_m(\lambda_{mn}r) \sin(m\theta) r \, dr \, d\theta,$$

for $m, n \in \mathbb{N}$.

This (essentially) completes the statement of the general solution to the vibrating circular membrane problem.
Since $\cos 0 = 1$ and $\sin 0 = 0$ we have

$$
\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_m(\lambda_{mn} r) \left(a_{mn} \cos(m\theta) + b_{mn} \sin(m\theta) \right) \cos(c\lambda_{mn} t)
$$

$$
= \sum_{n=1}^{\infty} a_{0n} J_0(\lambda_{0n} r) \cos(c\lambda_{0n} t) + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (\text{as above})
$$

- Note that there are really no b_{0n} coefficients.

- This is the "true form" of the first series in the solution.

Analogous comments hold for the second series.
If \(f(r, \theta) = f(r) \) (i.e. \(f \) is radially symmetric), then for \(m \neq 0 \)

\[
a_{mn} = (\cdots) \int_{0}^{2\pi} \int_{0}^{a} f(r) J_m(\lambda_{mn}r) \cos(m\theta) r \, dr \, d\theta \\
= (\cdots) \int_{0}^{a} \cdots \, dr \int_{0}^{2\pi} \cos(m\theta) \, d\theta = 0,
\]

and \(b_{mn} = 0 \), too. That is, there are only \(a_{0n} \) terms.

Likewise, if \(g \) is radially symmetric, then for \(m \neq 0 \)

\[
a_{mn}^* = b_{mn}^* = 0,
\]

and there are only \(a_{0n}^* \) terms.
Example

Solve the vibrating membrane problem with \(a = c = 1 \) and initial conditions

\[
f(r, \theta) = 1 - r^4, \quad g(r, \theta) = 0.
\]

Because \(g(r, \theta) = 0 \), we immediately find that \(a_{mn}^* = b_{mn}^* = 0 \) for all \(m \) and \(n \).

Because \(f \) is radially symmetric, we only need to compute \(a_{0n} \).

Since \(a = 1 \), \(\lambda_{mn} = \alpha_{mn} \), so

\[
a_{0n} = \frac{1}{\pi J_1^2(\alpha_{0n})} \int_0^{2\pi} \int_0^1 f(r) J_0(\alpha_{0n}r) r \, dr \, d\theta
\]

\[
= \frac{2}{J_1^2(\alpha_{0n})} \int_0^1 (1 - r^4) J_0(\alpha_{0n}r) r \, dr
\]

substitute \(x = \alpha_{0n}r \)
\[
\frac{2}{\alpha_{0n}^2 J_1^2(\alpha_{0n})} \int_0^{\alpha_{0n}} \left(1 - \frac{x^4}{\alpha_{0n}^4} \right) J_0(x) x \, dx
\]

\[
= \frac{2}{\alpha_{0n}^2 J_1^2(\alpha_{0n})} \left(\int_0^{\alpha_{0n}} xJ_0(x) \, dx - \frac{1}{\alpha_{0n}^4} \int_0^{\alpha_{0n}} x^5 J_0(x) \, dx \right).
\]

According to earlier results

\[
A = \int_0^{\alpha_{0n}} xJ_0(x) \, dx = xJ_1(x) \bigg|_0^{\alpha_{0n}} = \alpha_{0n}J_1(\alpha_{0n}),
\]

\[
B = \int_0^{\alpha_{0n}} x^5 J_0(x) \, dx = x^5 J_1(x) - 4x^4 J_2(x) + 8x^3 J_3(x) \bigg|_0^{\alpha_{0n}}
\]

\[
= \alpha_{0n}^5 J_1(\alpha_{0n}) - 4\alpha_{0n}^4 J_2(\alpha_{0n}) + 8\alpha_{0n}^3 J_3(\alpha_{0n}).
\]
It follows that

\[a_{0n} = \frac{2}{\alpha_{0n}^2 J_1^2(\alpha_{0n})} \left(A - \frac{1}{\alpha_{0n}^4} B \right) = \frac{8 \left(\alpha_{0n} J_2(\alpha_{0n}) - 2 J_3(\alpha_{0n}) \right)}{\alpha_{0n}^3 J_1^2(\alpha_{0n})}, \]

so that finally

\[u(r, \theta, t) = \sum_{n=1}^{\infty} \frac{8 \left(\alpha_{0n} J_2(\alpha_{0n}) - 2 J_3(\alpha_{0n}) \right)}{\alpha_{0n}^3 J_1^2(\alpha_{0n})} J_0(\alpha_{0n} r) \cos(\alpha_{0n} t). \]

Remark: This solution can easily be implemented in Maple, since the command

\[\text{BesselJZeros}(m,n) \]

will compute \(\alpha_{mn} \) numerically.
A non-symmetric example

Example

Solve the vibrating membrane problem with \(a = c = 1 \) and initial conditions:

\[
f(r, \theta) = r(1 - r^4) \cos \theta, \quad g(r, \theta) = 0.
\]

Since \(g \equiv 0 \), \(a^*_m = b^*_m = 0 \) for all \(m, n \). We also have

\[
b_{mn} = \frac{2}{\pi J^2_{m+1}(\alpha_{mn})} \int_0^{2\pi} \int_0^1 r(1 - r^4) \cos \theta J_m(\alpha_{mn} r) \sin(m\theta) r \, dr \, d\theta
\]

\[
= \frac{2}{\pi J^2_{m+1}(\alpha_{mn})} \left[\int_0^{2\pi} \cos \theta \sin(m\theta) \, d\theta \right] \int_0^1 r(1 - r^4) J_m(\alpha_{mn} r) r \, dr
\]

\[
= 0 \quad \text{for all } m, n.
\]
Additionally,

\[
\begin{align*}
a_{0n} &= \frac{1}{\pi J_1^2(\alpha_{0n})} \int_0^{2\pi} \int_0^1 r(1 - r^4) \cos \theta J_0(\alpha_{0n} r) r \, dr \, d\theta \\
&= \frac{1}{\pi J_1^2(\alpha_{0n})} \int_0^{2\pi} \cos \theta \, d\theta \int_0^1 r(1 - r^4) J_0(\alpha_{0n} r) r \, dr \\
&= 0, \\
\end{align*}
\]

and

\[
\begin{align*}
a_{mn} &= \frac{2}{\pi J_{m+1}^2(\alpha_{mn})} \int_0^{2\pi} \int_0^1 r(1 - r^4) \cos \theta J_m(\alpha_{mn} r) \cos(m\theta) r \, dr \, d\theta \\
&= \frac{2}{\pi J_{m+1}^2(\alpha_{mn})} \int_0^{2\pi} \cos \theta \cos(m\theta) \, d\theta \int_0^1 r(1 - r^4) J_m(\alpha_{mn} r) r \, dr.
\end{align*}
\]
The integral A is zero unless $m = 1$, in which case it’s equal to π. In this case

$$a_{1n} = \frac{2}{J_2^2(\alpha_{1n})} \int_0^1 r(1 - r^4)J_1(\alpha_{1n}r)r \, dr$$

$$= \frac{2}{J_2^2(\alpha_{1n})} \left(\int_0^1 r^2 J_1(\alpha_{1n}r) \, dr - \int_0^1 r^6 J_1(\alpha_{1n}r) \, dr \right).$$

Substituting $x = \alpha_{1n}r$ and proceeding as before one can show

$$\int_0^1 r^2 J_1(\alpha_{1n}r) \, dr = \frac{J_2(\alpha_{1n})}{\alpha_{1n}},$$

$$\int_0^1 r^6 J_1(\alpha_{1n}r) \, dr = \frac{J_2(\alpha_{1n})}{\alpha_{1n}^2} - \frac{4J_3(\alpha_{1n})}{\alpha_{1n}^2} + \frac{8J_4(\alpha_{1n})}{\alpha_{1n}^3}.$$
Assembling these formulae gives

\[a_{1n} = \frac{2}{J_2^2(\alpha_{1n})} \left(\frac{4J_3(\alpha_{1n})}{\alpha_{1n}^2} - \frac{8J_4(\alpha_{1n})}{\alpha_{1n}^3} \right) = \frac{8 \left(\alpha_{1n}J_3(\alpha_{1n}) - 2J_4(\alpha_{1n}) \right)}{\alpha_{1n}^3 J_2^2(\alpha_{1n})}. \]

Since all the other coefficients are zero,

\[u(r, \theta, t) = \cos \theta \sum_{n=1}^{\infty} \frac{8 \left(\alpha_{1n}J_3(\alpha_{1n}) - 2J_4(\alpha_{1n}) \right)}{\alpha_{1n}^3 J_2^2(\alpha_{1n})} J_1(\alpha_{1n}r) \cos(\alpha_{1n}t). \]

Remark: In general, one should **not** expect the solution to reduce to a single series.
A "complicated" example

Example

Solve the vibrating membrane problem with \(a = 2, c = 1 \) and initial conditions

\[
 f(r, \theta) = 0, \quad g(r, \theta) = r^2(2 - r) \sin^8 \left(\frac{\theta}{2} \right).
\]

Since \(f \equiv 0 \), \(a_{mn} = 0 \), \(b_{mn} = 0 \). We also have

\[
 b^*_{mn} = (\cdots) \int_0^2 (\cdots) \, dr \int_0^{2\pi} \sin^8 \left(\frac{\theta}{2} \right) \sin(m\theta) \, d\theta = 0,
\]

odd, \(2\pi \)-periodic

\[
 a^*_{0n} = \frac{1}{\pi \alpha_{0n}^2 J_1^2(\alpha_{0n})} \int_0^{2\pi} \sin^8 \left(\frac{\theta}{2} \right) \, d\theta \int_0^2 r^2(2 - r)J_0(\lambda_{0n}r) \, dr,
\]

\(35\pi/64 \) (Maple)
and

\[a_{mn}^* = \frac{2}{\pi \alpha_{mn} 2 J_{m+1}^2(\alpha_{mn})} \int_0^{2\pi} \sin^8 \left(\frac{\theta}{2} \right) \cos(m\theta) \, d\theta \]

\[\cdot \int_0^2 r^2 (2 - r) J_m(\lambda_{mn} r) r \, dr . \]

0 if \(m \geq 5 \) (Maple)

The solution therefore can be written

\[u(r, \theta, t) = \sum_{m=0}^{4} \sum_{n=1}^{\infty} a_{mn}^* J_m(\lambda_{mn} r) \cos(m\theta) \sin(\lambda_{mn} t), \]

although the (?) integrals are not amenable to evaluation by hand.