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Inner products with weight functions

If w(x) ≥ 0 for x ∈ [a, b] we define the inner product on [a, b] with
respect to the weight w to be

〈f , g〉 =
∫ b

a

f (x)g(x)w(x) dx .

We say f and g are orthogonal on [a, b] with respect to the weight
w if

〈f , g〉 = 0.

Remarks:

The inner product and orthogonality depend on the choice of
a, b and w .

When w(x) ≡ 1, these definitions become the “ordinary”
ones.

Weighted inner products have exactly the same algebraic
properties as the “ordinary” inner product.
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Examples

The functions fn(x) = sin(nx) (n = 1, 2, . . .) are pairwise
orthogonal on [0, π] with respect to the weight function
w(x) ≡ 1.

For a fixed p ≥ 0, the functions fn(x) = Jp(αpnx/a) are
pairwise orthogonal on [0, a] with respect to the weight
function w(x) = x .

The functions

f0(x) = 1, f1(x) = 2x , f2(x) = 4x2 − 1, f3(x) = 8x3 − 4x ,

f4(x) = 16x4 − 12x2 + 1, f5(x) = 32x5 − 32x3 + 6x

are pairwise orthogonal on [−1, 1] with respect to the weight
function w(x) =

√
1− x2.
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Sturm-Liouville equations

A (second order) Sturm-Liouville equation has the form

(p(x)y ′)′ + (q(x) + λr(x))y = 0

where p, q and r are specific functions, and λ is a parameter.

Remarks:

Because λ is a parameter, it is frequently replaced by other
variables or expressions.

Many “familiar” ODEs that occur during separation of
variables can be put in Sturm-Liouville form.

Daileda S-L theory



Example

Show that y ′′ + λy = 0 is a Sturm-Liouville equation.

Take p(x) = r(x) = 1 and q(x) = 0.

Example

Put the parametric Bessel equation

x2y ′′ + xy ′ + (λ2x2 −m2)y = 0

in Sturm-Liouville form.

First we divide by x to get

xy ′′ + y ′
︸ ︷︷ ︸

(xy ′)′

+

(

λ2x − m2

x

)

y = 0.

This is in Sturm-Liouville form with p(x) = x , q(x) = −m2

x
,

r(x) = x , and parameter λ2.
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Example

Put Chebyshev’s differential equation

(1− x2)y ′′ − xy ′ + n2y = 0

in Sturm-Liouville form.

First we divide by
√
1− x2 to get

√

1− x2 y ′′ − x√
1− x2

y ′

︸ ︷︷ ︸

(
√
1−x2 y ′)′

+
n2√
1− x2

y = 0.

This is in Sturm-Liouville form with

p(x) =
√

1− x2, q(x) = 0, r(x) =
1√

1− x2
,

provided we write the parameter as n2.
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Sturm-Liouville problems

Definition: A (second order) Sturm-Liouville (S-L) problem
consists of

A Sturm-Liouville equation on an interval:

(p(x)y ′)′ + (q(x) + λr(x))y = 0, a < x < b,

together with

Boundary conditions, i.e. specified behavior of y at x = a and
x = b.

Definition: A function y 6≡ 0 that solves an S-L problem is called
an eigenfunction, and the corresponding value of λ is called its
eigenvalue.
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Examples

The boundary value problem

y ′′ + λy = 0, y(−p) = y(p), y ′(−p) = y ′(p),

is an S-L problem on the interval [−p, p]. We have seen that

Eigenvalues: λ = λn =

(
nπ

p

)2

(n ∈ N0)

Eigenfunctions: y = yn = an cos

(
nπx

p

)

+ bn sin

(
nπx

p

)

The boundary value problem

y ′′ + λy = 0, y(0) = y(L) = 0,

is an S-L problem on the interval [0, L]. We have seen that

Eigenvalues: λ = λn =
(nπ

L

)2
(n ∈ N)

Eigenfunctions: y = yn = cn sin
(nπx

L

)
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The boundary value problem

y ′′ + λy = 0, y(0) = 0, y ′(L) = −κy(L),

is an S-L problem on the interval [0, L]. We have seen that

Eigenvalues: λ = λn = µ2
n

(

tanµn = −µn

κ

)

Eigenfunctions: y = yn = cn sin (µnx)

The boundary value problem

x2y ′′ + xy ′ + (λ2x2 − p2)y = 0, y(0) finite, y(a) = 0

is an S-L problem on the interval [0, a]. We have seen that

Eigenvalues: λ2 = λ2
n =

(αpn

a

)2
(n ∈ N)

Eigenfunctions: y = yn = cnJp

(αpnx

a

)

where αpn is the nth positive zero of Jp.
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Inner products of eigenfunctions

Suppose (yj , λj ), (yk , λk) are eigenfunction/eigenvalue pairs of an
S-L problem:

(py ′j )
′ + (q + λj r)yj = 0,

(py ′k)
′ + (q + λk r)yk = 0.

Multiply the first by yk and the second by yj , then subtract to get

(py ′j )
′yk − (py ′k)

′yj + (λj − λk)yjyk r = 0.

Moving the λ-terms to one side and “adding zero,” we get

(λj − λk)yjyk r = (py ′k)
′yj − (py ′j )

′yk

= (py ′k)
′yj + py ′ky

′
j − py ′j y

′
k − (py ′j )

′yk

= (py ′kyj − py ′j yk)
′

=
(
p(y ′kyj − y ′j yk)

)′
.
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If λj 6= λk , we can divide by λj − λk to get

yjyk r =

(

p(y ′kyj − y ′j yk)
)′

λj − λk

=
(p ·W (yj , yk))

′

λj − λk

Now integrate both sides to obtain:

Proposition

If (yj , λj), (yk , λk) are eigenfunction/eigenvalue pairs for an S-L
problem on the interval [a, b] and λj 6= λk , then their inner product
with respect to the weight function r(x) is

〈yj , yk〉 =
∫ b

a

yj(x)yk(x)r(x) dx =
p(x)W (yj , yk)(x)

λj − λk

∣
∣
∣
∣
∣

b

a

.
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Remarks

We will be interested in conditions that guarantee

〈yj , yk〉 =
p(x)W (yj , yk)(x)

λj − λk

∣
∣
∣
∣
∣

b

a

= 0,

i.e. that eigenfunctions with distinct eigenvalues are orthogonal.

Examples include:

Periodic S-L problems, i.e. p(a) = p(b) and

y(a) = y(b), y ′(a) = y ′(b).

S-L problems satisfying p(a) = 0 and

y(a) is finite, y(b) = 0.
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Example

Use the preceding results to establish the orthogonality of the
trigonometric system

{

1, cos

(
πx

p

)

, cos

(
2πx

p

)

, . . . , sin

(
πx

p

)

, sin

(

2
πx

p

)

, . . .

}

on the interval [−p, p] with respect to the weight function
w(x) = 1.

The functions y = cos

(
nπx

p

)

and y = sin

(
nπx

p

)

are

eigenfunctions of the periodic S-L problem

y ′′ + λy = 0, y(−p) = y(p), y ′(p) = y ′(−p)

with eigenvalue λ =

(
nπ

p

)2

.
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Since r(x) ≡ 1 in this case, we automatically find that

∫ p

−p

cos

(
mπx

p

)

cos

(
nπx

p

)

dx =

∫ p

−p

cos

(
mπx

p

)

sin

(
nπx

p

)

dx =

∫ p

−p

sin

(
mπx

p

)

sin

(
nπx

p

)

dx = 0 for m 6= n.

We must verify orthogonality of cos

(
nπx

p

)

and sin

(
nπx

p

)

manually, since they have the same eigenvalue:

∫ p

−p

cos

(
nπx

p

)

sin

(
nπx

p

)

dx =
p

2nπ
sin2

(
nπx

p

) ∣
∣
∣
∣

p

−p

= 0.

That covers every case, so we’re done.
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Example

Use the preceding results to establish the orthogonality of the
Bessel function system

{

Jp

(αp1x

a

)

, Jp

(αp2x

a

)

, Jp

(αp3x

a

)

, . . . ,
}

on the interval [0, a] with respect to the weight function w(x) = x.

The function y = Jp
(
αpnx

a

)
is an eigenfunction of the S-L problem

x2y ′′ + xy ′ + (λ2x2 − p2)y = 0, y(0) finite, y(a) = 0

with eigenvalue λ2 =
(
αpn

a

)2
. The S-L form of this equation is

(xy ′)′ +

(

−p2

x
+ λ2x

)

y = 0,

which shows that this problem is of the second type mentioned
above. Since r(x) = x , we’re done.
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Regular Sturm-Liouville problems

A regular Sturm-Liouville problem on [a, b] has the form

(p(x)y ′)′ + (q(x) + λr(x))y = 0, a < x < b,

c1y(a) + c2y
′(a) = 0, (1)

d1y(b) + d2y
′(b) = 0, (2)

where:

(c1, c2) 6= (0, 0) and (d1, d2) 6= (0, 0);

p, p′, q and r are continuous on [a, b];

p and r are positive on [a, b].

Remark: We will focus on the boundary conditions (1) and (2),
since they yield orthogonality of eigenfunctions.
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Examples

The boundary value problem

y ′′ + λy = 0, 0 < x < L,

y(0) = y(L) = 0,

is a regular S-L problem (p(x) = 1, r(x) = 1, q(x) = 0).

The boundary value problem

((x2 + 1)y ′)′ + (x + λ)y = 0, −1 < x < 1,

y(−1) = y ′(1) = 0,

is a regular S-L problem (p(x) = x2 + 1, q(x) = x , r(x) = 1).
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Non-example

Although important, the boundary value problem

x2y ′′ + xy ′ + (λ2x2 − p2)y = 0, 0 < x < a,

y(0) finite, y(a) = 0,

is not a regular Sturm-Liouville problem.

In Sturm-Liouville form we had p(x) = r(x) = x , q(x) = −p2/x .

p and r are not positive when x = 0.

q is not continuous when x = 0.

The boundary condition at x = 0 is irregular.

This is an example of a singular Sturm-Liouville problem.
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Orthogonality in regular S-L problems

Suppose yj , yk are eigenfunctions of a regular S-L problem with
distinct eigenvalues λj , λk . The boundary condition at x = a gives

c1yj(a) + c2y
′
j (a) = 0,

c1yk(a) + c2y
′
k(a) = 0,

}

⇒
(

yj(a) y ′j (a)

yk(a) y ′k(a)

)(
c1
c2

)

=

(
0
0

)

.

Since (c1, c2) 6= (0, 0) the determinant must be zero:

yj(a)y
′
k(a)− yk(a)y

′
j (a) = W (yj , yk)(a) = 0.

Likewise, the boundary condition at x = b gives W (yj , yk)(b) = 0.
This means that

〈yj , yk〉 =
p(x)W (yj , yk)(x)

λj − λk

∣
∣
∣
∣
∣

b

a

= 0.
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Eigenfunctions and eigenvalues of regular S-L problems

There’s a great deal more that can be said about the
eigenfunctions and eigenvalues of regular S-L problems.

Theorem

The eigenvalues of a regular S-L problem on [a, b] form an
increasing sequence of real numbers

λ1 < λ2 < λ3 < · · ·

with lim
n→∞

λn = ∞.

Eigenfunctions corresponding to distinct eigenvalues are orthogonal
on [a, b] with respect to the weight r(x).

Moreover, the eigenfunction yn corresponding to λn is unique (up
to a scalar multiple), and has exactly n − 1 zeros in the interval
a < x < b.

Daileda S-L theory



“Fourier convergence” for S-L problems

Without explicitly saying so, we have frequently made use of the
following property of eigenfunctions of regular S-L problems.

Theorem

Let y1, y2, y3, . . . be the eigenfunctions of a (regular) S-L problem
on [a, b]. If f is piecewise smooth on [a, b], then

f (x+) + f (x−)

2
=

∞∑

n=1

Anyn(x),

where

An =
〈f , yn〉
〈yn, yn〉

=

∫ b

a

f (x)yn(x)r(x) dx

∫ b

a

y2n (x)r(x) dx

.
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Remarks

The series
∑∞

n=1 Anyn is the eigenfunction expansion of f .

Recall that f (x) = f (x+)+f (x−)
2 anywhere f is continuous, so

the eigenfunction expansion is equal to f at most points.

We have already proven the orthogonality statement, and
have many times used it to “extract” the coefficients in
eigenfunction expansions. Proofs of the remaining results are
beyond the scope of our class.

Aside from the “moreover” statement, these theorems hold for
many irregular S-L problems (as we have seen). The
“original” Fourier convergence theorem is one such example.

The results of S-L theory unify and explain all of the ODE
boundary value problems we have encountered throughout the
semester!
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