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The Fourier transform

Recall

The Fourier transform

The Fourier transform of a piecewise smooth f € L}(R) is
flw) = F(F)(w) = — /OO F(x)e~ i dx
w) = w) = — N
V271 J—o

and f can be recovered from f via the inverse Fourier transform

f(x) = F H(F)(x) = \/% /_ Z f(w)e™™ duw.

Remarks:

@ See Appendix B1 for a table of Fourier transform pairs.

@ The Fourier transform can help solve boundary value problems
with unbounded domains.
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The Fourier transform

Fourier transforms of two-variable functions

If u(x,t) is defined for

—00 < x < 00, we define its Fourier
transform in x to be

i, ) = Flu(x, £))(w) = \/%7 /_ 7 (x, t)e .

Because the Fourier transform treats t as a constant, we have

a <§X ) — (iw)"F(u) = ()"0

and

o" 1 > 0"u —jwx
F <8t”> \/_ T —(x, t)e dx

iwx o 0"
% <E /;OO U(X, t)e dX) = 8tn]:(u) = at”
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Heat problems on an infinite rod

Solve the 1-D heat equation on an infinite rod,

ut:czuxx, —co<x<oo, t>0,

u(x,0) = f(x).

We take the Fourier transform (in x) on both sides to get

A(iw)?0 = —c?w?i
f

w,0) = f(w).
Since there is only a t derivative, we solve as though w were a
constant:

U(w, t) = Aw)e <"t = f(w) = i(w,0) = Aw).
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Heat problems on an infinite rod

To solve for u, we invert the Fourier transform, obtaining

u(x,t) = (w, t)e“™ dw

1 o0

\/27'(‘\/—00
1 x4 2 2,

= — f(w)e Yt duw.
\/27'(‘\/—()0 ( )

Remarks.

@ This expresses the solution in terms of the Fourier transform
of the initial temperature distribution f(x).

@ We can obtain an (integral) expression for the solution
directly in terms of f by instead recognizing the presence of a
convolution, prior to Fourier inversion.
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Heat problems on an infinite rod

The heat kernel

The function 1
2 2
x) = e X /(4c*t)
gt( ) C\/ﬂ
is called the heat kernel. We can use earlier results to deduce that
é\_t(w) — e—czwzt’

and hence the solution above can also be written

~

G(w, t) = flw)e ="t = F(w)g(w) =  * ge(w).

Applying F~! to both sides this means that

u(x, £) = (F * ge)(x) = r/ S)an(x — s) ds

S)e—(x 5)?/4c? tds.

2(:\/
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Heat problems on an infinite rod
Example

Solve the boundary value problem

Ur = tlyy, —00<Xx <00, t>0,

u(x,0) = f(x),

which models the temperature in an infinitely long rod with

variable thermal diffusivity.

Taking the Fourier transform (in x) on both sides yields

The ODE in t is separable, with solution

0w, t) = Alw)e P72 F(w) = d(w,0) = A(w).
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Heat problems on an infinite rod

As before, Fourier inversion gives

u(x,t) = — f(w)e‘t2w2/2ei“’x dw.

In comparison with the preceding example, this decays more
rapidly as t increases. This is is physically reasonable, since the
thermal diffusivity is increasing with t.

Remark: Notice that this is the solution of the previous example,
with t2/2 replacing c2t. Using the earlier remark, this means

u(x, t) s)e_(x_5)2/2’f2 ds.

t\/ 2T
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Other examples

Solve the third order mixed derivative boundary value problem

Upp = Uy, —00 < Xx <00, t>0,

u(x,0) = f(x), u(x,0)=g(x).

Taking the Fourier transform (in x) on both sides yields

= (iw)?iy = —w?dy,

(w,0) = f(w), e(w,0) = g(w)

<>

<>

Solving the ODE it t for {; gives

Or(w, t) = A(w)e_“’Qt = d(w,t)= —Au(;;) ety B(w)

= A(w)e‘“’Zt + B(w).
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Other examples

Imposing the initial conditions we find that

N A . A(w) — _é(w)
f(w) = i(w,0) = A(w) + B(w) N w?
é(w) = 0t OJ,O) = - WZA(W) B(w) _ f(w) + g((’;)

Plugging these into i and applying Fourier inversion yields

(OJ) e—th + f’:‘(w) + g(i)) eiwx dw
w

g(w (1 . e—w2t)> eiwx dow

0= g [ (2
w2

=5 (e
_ f(x)—i—\/%_ﬁ/_(: @(W)(l_e—w%)eiwx do.
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Example

Solve the boundary value problem

t2uy—up =0, —co<x<o00, t>0,
u(x,0) = f(x),

and express the solution explicitly in terms of f.

Taking the Fourier transform (in x) on both sides yields

The ODE in t is separable, with solution

i(w, t) = Aw)et™“® = f(w) = i(w,0) = Aw).
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Other examples

Using Fourier inversion leads to

(X t lt3w/3eiwx dw

\/ 2m /
"(w)eiw(x+t3/3) dw

vl

t3
=f — .
<X+ 3>

Remark: This particular problem is amenable to the method of
characteristics, although the Fourier transform method may seem
somewhat more straightforward.
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Example

Solve the Dirichlet problem in the upper half-plane

V2u:uxx+uyy:O, —oco < x <00, y>0,
u(x,0) = f(x),

which models the steady state temperature in a semi-infinite plate.
. ot

Taking the Fourier transform (in x) on both sides yields

The ODE in y has characteristic equation

P—w?=0 =>r=4w = iw,y)=AWw)e” + Bw)e ™.
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The semi-infinite plate

We now require that d(w,y) remain bounded as y — oo.
Consequently,

w>0 = Aw)
w<0 = Bw)

° } = d(w,y) = Clw)e ™
= f(w)=i0(w,0) = C(w)

Now recall that (for a > 0)

Fle K = \/glij .
5(3)

F(g(ax)) =

[
N2
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The semi-infinite plate

Since

FHA)(x) = F(F)(=x),

applying F~! to both sides, we have

—alx 2 a
¢ ':]:(\gm)(‘x)
2 a —al—x —alx
- F(ﬁm%):e = e
e 2y —
= e ':]:(\Em) = Py(w)

Py(x)

The function P, (x) is called the Poisson kernel.
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The semi-infinite plate

Therefore
i(w, t) = Fw)e ™ = Fw)P, (w) = F P, (w).
Finally, we apply Fourier inversion to find that

u(x,y) = (f * Py)(x)
= J%/_ f(s)Py(x —s)ds

©f
:Z/ s (s) 5 ds,
TJ-cY +(X_S)

which is known as the Poisson integral formula for the solution to
the Dirichlet problem on the upper half-plane.
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