Power Series, Part 2:

Analytic Solutions at Ordinary Points of ODEs

R. C. Daileda

Trinity University

Partial Differential Equations April 2, 2015

Introductory example

Example

Find the general solution to $y^{\prime \prime}-x y^{\prime}-y=0$.
This is a second order, linear ODE, but...
it does not have constant coefficients!
Consequently we cannot find the solutions in the usual way (via the characteristic polynomial).
Instead, we use the Power Series Method. We begin by assuming the solution is analytic at $a=0$

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

and attempt to determine the coefficients a_{n}.

Since

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}, \quad y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2},
$$

plugging into the ODE we find that we must have

$$
\begin{aligned}
& \underbrace{\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}}_{m=n-2}-\underbrace{\sum_{n=1}^{\sum_{n=1}^{\infty} n a_{n} x^{n-1}}-\sum_{n=0}^{\infty} a_{n} x^{n}=0}_{\text {distribute } x} \\
& \underbrace{\sum_{m=0}^{\infty}(m+2)(m+1) a_{m+2} x^{m}-\sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}=0}_{n=m} \\
& \underbrace{2 a_{2}-a_{0}}_{x^{0} \text { coeff. }}+\sum_{n=1}^{\infty}\left((n+2)(n+1) a_{n+2}-n a_{n}-a_{n}\right) x^{n}=0
\end{aligned}
$$

Uniqueness of power series coefficients implies that

$$
\begin{aligned}
2 a_{2}-a_{0} & =0 \\
(n+2)(n+1) a_{n+2}-(n+1) a_{n} & =0, \quad n \geq 1,
\end{aligned}
$$

or, equivalently,

$$
a_{n+2}=\frac{a_{n}}{n+2}, \quad n \geq 0
$$

Remarks.

- This is a recursion relation for the coefficients.
- We are free to choose a_{0}, a_{1}. Then $a_{2}, a_{3}, a_{4}, \ldots$ are completely determined.
- If possible, we would now like to solve for a_{n} in terms of a_{0} and a_{1}.

Notice that

$$
\begin{aligned}
a_{2}=\frac{a_{0}}{2} & \Rightarrow a_{4}=\frac{a_{2}}{4}=\frac{a_{0}}{4 \cdot 2} \Rightarrow a_{6}=\frac{a_{4}}{6}=\frac{a_{0}}{6 \cdot 4 \cdot 2} \Rightarrow \cdots \\
& \Rightarrow a_{2 k}=\frac{a_{0}}{(2 k)(2 k-2)(2 k-4) \cdots 2}=\frac{a_{0}}{2^{k} k!}
\end{aligned}
$$

and

$$
\begin{aligned}
& a_{3}=\frac{a_{1}}{3} \Rightarrow a_{5}=\frac{a_{3}}{5}=\frac{a_{1}}{5 \cdot 3} \Rightarrow a_{7}=\frac{a_{5}}{7}=\frac{a_{1}}{7 \cdot 5 \cdot 3} \Rightarrow \cdots \\
& \Rightarrow \quad a_{2 k+1}=\frac{a_{1}}{(2 k+1)(2 k-1)(2 k-3) \cdots 3 \cdot 1} \\
&=\frac{(2 k)(2 k-2)(2 k-4) \cdots 2 a_{1}}{(2 k+1)!}=\frac{2^{k} k!a_{1}}{(2 k+1)!}
\end{aligned}
$$

This means that

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{k=1}^{\infty} a_{2 k} x^{2 k}+\sum_{k=0}^{\infty} a_{2 k+1} x^{2 k+1} \\
& =a_{0} \underbrace{\sum_{k=1}^{\infty} \frac{1}{2^{k} k!} x^{2 k}}_{y_{1}(x)}+a_{1} \underbrace{\sum_{k=0}^{\infty} \frac{2^{k} k!}{(2 k+1)!} x^{2 k+1}}_{y_{2}(x)} .
\end{aligned}
$$

Remarks

- The ratio test implies both series have $R=\infty$ (HW).
- We have

$$
\left.\begin{array}{rl}
a_{0}=1, a_{1}=0 & \Rightarrow y=y_{1} \\
a_{0}=0, a_{1}=1 & \Rightarrow y=y_{2}
\end{array}\right\} \Rightarrow y_{1}, y_{2} \text { both solve the ODE. }
$$

Finally, notice that

$$
\left.\begin{array}{l}
y_{1}(0)=1, \quad y_{1}^{\prime}(0)=0 \\
y_{2}(0)=0, \quad y_{2}^{\prime}(0)=1
\end{array}\right\} \Rightarrow \underbrace{W\left(y_{1}, y_{2}\right)}_{\text {the Wronskian }}(0)=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1
$$

so that y_{1} and y_{2} are linearly independent solutions of the ODE.

Conclusion: The general solution to $y^{\prime \prime}-x y^{\prime}-y=0$ is

$$
y=a_{0} y_{1}+a_{1} y_{2}=a_{0} \sum_{k=1}^{\infty} \frac{1}{2^{k} k!} x^{2 k}+a_{1} \sum_{k=0}^{\infty} \frac{2^{k} k!}{(2 k+1)!} x^{2 k+1}
$$

and these series converge for all x.

The following result generalizes the outcome of the previous example.

Theorem

Suppose that $p(x), q(x)$ and $g(x)$ are analytic at $x=a$ and have (positive) radii of convergence R_{1}, R_{2} and R_{3}, respectively. Then every solution of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)
$$

is analytic at $x=a$ with radius $R \geq \min \left\{R_{1}, R_{2}, R_{3}\right\}$.
For the equation $y^{\prime \prime}-x y^{\prime}-y=0$ we have

$$
p(x)=-x, \quad q(x)=-1, \quad g(x)=0
$$

These are all analytic at $a=0$ with $R=\infty$, so the solutions must have the same property.

Remarks

- If $p(x), q(x)$, and $r(x)$ are analytic at $x=a$, we say that $x=a$ is an ordinary point of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)$.
- Recall that if $y=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$, then

$$
a_{0}=y(a) \quad \text { and } \quad a_{1}=y^{\prime}(a) .
$$

Therefore the pair $\left(a_{0}, a_{1}\right)$ will always determine the remaining coefficients of y. The Method of Power series provides an explicit recursion for the coefficients.

- If y_{1} has $a_{0}=1, a_{1}=0$ and y_{2} has $a_{0}=0, a_{1}=1$, then

$$
W\left(y_{1}, y_{2}\right)(a)=\left|\begin{array}{ll}
y_{1}(a) & y_{2}(a) \\
y_{1}^{\prime}(a) & y_{2}^{\prime}(a)
\end{array}\right|=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1 \neq 0
$$

$\Rightarrow \quad y_{1}, y_{2}$ are linearly independent solutions.

Remarks (cont.)

With the preceding choices of y_{1} and y_{2} :

- The general solution is $y=c_{1} y_{1}+c_{2} y_{2}$.
- This general solution has the property that

$$
\begin{aligned}
a_{0}=y(a) & =c_{1} y_{1}(a)+c_{2} y_{2}(a)=c_{1} \\
a_{1}=y^{\prime}(a) & =c_{1} y_{1}^{\prime}(a)+c_{2} y_{2}^{\prime}(a)=c_{2}
\end{aligned}
$$

- This makes solving the BVP $y(a)=A, y^{\prime}(a)=B$ extremely easy. If you've found y_{1}, y_{2}, then set

$$
y=A y_{1}+B y_{2} .
$$

Otherwise, set $a_{0}=A, a_{1}=B$ and use the recursion relation.

Example

Show that $a=0$ is an ordinary point of $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0$. Find two linearly independent solutions that are analytic at $a=0$, and give a lower bound for their radii of convergence.

In standard form, the ODE is

$$
y^{\prime \prime}+\frac{2}{4-x^{2}} y=0
$$

We have $p(x)=0$ and

$$
q(x)=\frac{2}{4-x^{2}}=\frac{1}{2} \cdot \frac{1}{1-(x / 2)^{2}}=\frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{2 n}}{2^{2 n}} \text { for }|x|<2 .
$$

It follows that $a=0$ is an ordinary point and that all solutions are analytic there with $R \geq 2$.

To find the solutions, we set $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ in the ODE:

$$
\begin{aligned}
& \left(4-x^{2}\right) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0, \\
& \sum_{n=2}^{\infty} 4 n(n-1) a_{n} x^{n-2}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0, \\
& \sum_{n=0}^{\infty} 4(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0,
\end{aligned}
$$

$$
\underbrace{8 a_{2}+2 a_{0}}_{n=0}+\underbrace{\left(24 a_{3}+2 a_{1}\right) x}_{n=1}
$$

$$
+\sum_{n=2}^{\infty}\left(4(n+2)(n+1) a_{n+2}-(n(n-1)-2) a_{n}\right) x^{n}=0
$$

This gives the relations

$$
\begin{aligned}
& 8 a_{2}+2 a_{0}=0, \quad 24 a_{3}+2 a_{1}=0, \\
& 4(n+2)(n+1) a_{n+2}-\underbrace{(n(n-1)-2)}_{(n-2)(n+1)} a_{n}=0 \text { for } n \geq 2,
\end{aligned}
$$

or, equivalently

$$
a_{n+2}=\frac{(n-2) a_{n}}{4(n+2)} \quad \text { for } n \geq 0
$$

Thus

$$
\begin{aligned}
a_{2}=\frac{-a_{0}}{4} \Rightarrow a_{4} & =\frac{0 \cdot a_{2}}{4 \cdot 4}=0 \Rightarrow a_{6}=\frac{2 \cdot a_{4}}{4 \cdot 6}=0 \Rightarrow \cdots \\
& \Rightarrow a_{2 k}=0 \text { for } k \geq 2 .
\end{aligned}
$$

And

$$
\begin{gathered}
a_{3}=\frac{-a_{1}}{4 \cdot 3} \Rightarrow a_{5}=\frac{a_{3}}{4 \cdot 5}=\frac{-a_{1}}{4^{2} \cdot 5 \cdot 3} \Rightarrow a_{7}=\frac{3 \cdot a_{5}}{4 \cdot 7}=\frac{-a_{1}}{4^{3} \cdot 7 \cdot 5} \\
\Rightarrow \quad a_{9}=\frac{5 \cdot a_{7}}{4 \cdot 9}=\frac{-a_{1}}{4^{4} \cdot 9 \cdot 7} \Rightarrow \cdots \Rightarrow \quad a_{2 k+1}=\frac{-a_{1}}{4^{k}(2 k+1)(2 k-1)}
\end{gathered}
$$

for $k \geq 0$. Therefore, setting $a_{0}=1, a_{1}=0$ gives the solution

$$
y_{1}(x)=1-\frac{x^{2}}{4} \quad(\text { note that } R=\infty)
$$

and setting $a_{0}=0, a_{1}=1$ gives the independent solution

$$
y_{2}(x)=-\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{4^{k}(2 k+1)(2 k-1)} \quad \text { (can show that } R=2 \text {). }
$$

The general solution is $y=a_{0} y_{1}+a_{1} y_{2}$.

Example

Show that $a=0$ is an ordinary point of $y^{\prime \prime}-2 y^{\prime}+x y=0$, and find the recursion relation satisfied by the coefficients of any solution that is analytic at $a=0$. Determine the first few coefficients in two linearly independent solutions, and state their radii of convergence.

We have $p(x)=-2$ and $q(x)=x$, both of which are power series (at $a=0$) with $R=\infty$.

Therefore $a=0$ is an ordinary point, and every solution is analytic at $a=0$ with $R=\infty$ as well.

Substituting $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ and simplifying yields
$\underbrace{2 a_{2}-2 a_{1}}_{n=0}+\sum_{n=1}^{\infty}\left((n+2)(n+1) a_{n+2}-2(n+1) a_{n+1}+a_{n-1}\right) x^{n}=0$.

Therefore $a_{2}=a_{1}$ and

$$
a_{n+2}=\frac{2(n+1) a_{n+1}-a_{n-1}}{(n+2)(n+1)} \quad \text { for } n \geq 1
$$

With $a_{0}=1, a_{1}=0$ this yields

$$
y_{1}(x)=1-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}-\frac{1}{30} x^{5}-\frac{1}{80} x^{6}+\frac{1}{2520} x^{7}+\cdots,
$$

whereas with $a_{0}=0, a_{1}=1$ we get

$$
y_{2}(x)=x+x^{2}+\frac{2}{3} x^{3}+\frac{1}{4} x^{4}+\frac{1}{20} x^{5}-\frac{1}{180} x^{6}-\frac{19}{2520} x^{7}-\cdots .
$$

Example

Show that $a=1$ is an ordinary point of $x y^{\prime \prime}+y^{\prime}+x y=0$, and find the recursion relation satisfied by the coefficients of any solution that is analytic at $a=1$. Determine the first few coefficients in two linearly independent solutions, and give a lower bound on their radii of convergence. Express the solution with initial conditions $y(1)=5, y^{\prime}(1)=-3$ in terms of this basis.

In standard form, the ODE is $y^{\prime \prime}+\frac{1}{x} y^{\prime}+y=0$, which has $q(x)=1$ and

$$
p(x)=\frac{1}{x}=\frac{1}{1+(x-1)}=\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n} \quad \text { for }|x-1|<1
$$

Therefore $a=1$ is an ordinary point, and every solution is analytic at $a=1$ with $R \geq 1$.

We now "recenter" the coefficients in the ODE:

$$
\begin{aligned}
x y^{\prime \prime}+y^{\prime}+x y & =0 \\
(x-1+1) y^{\prime \prime}+y^{\prime}+(x-1+1) y & =0 \\
(x-1) y^{\prime \prime}+y^{\prime \prime}+y^{\prime}+(x-1) y+y & =0
\end{aligned}
$$

Plugging in $y=\sum_{n=0}^{\infty} a_{n}(x-1)^{n}$, we eventually obtain
$\left(2 a_{2}+a_{1}+a_{0}\right)$

$$
+\sum_{n=1}^{\infty}\left((n+2)(n+1) a_{n+2}+(n+1)^{2} a_{n+1}+a_{n}+a_{n-1}\right)(x-1)^{n}=0
$$

This gives the relations

$$
a_{2}=\frac{-\left(a_{0}+a_{1}\right)}{2} \quad \text { and } \quad a_{n+2}=\frac{-(n+1)^{2} a_{n+1}-a_{n}-a_{n-1}}{(n+2)(n+1)}
$$

for $n \geq 1$.

With $a_{0}=1, a_{1}=0$ we find that

$$
\begin{aligned}
y_{1}(x)= & 1-\frac{1}{2}(x-1)^{2}+\frac{1}{6}(x-1)^{3}-\frac{1}{12}(x-1)^{4} \\
& +\frac{1}{12}(x-1)^{5}-\frac{13}{180}(x-1)^{6}+\frac{13}{210}(x-1)^{7}+\cdots,
\end{aligned}
$$

and with $a_{0}=0, a_{1}=1$ we obtain

$$
\begin{aligned}
y_{2}(x)= & (x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{6}(x-1)^{3}-\frac{1}{6}(x-1)^{4} \\
& +\frac{3}{20}(x-1)^{5}-\frac{1}{8}(x-1)^{6}+\frac{271}{2520}(x-1)^{7} \cdots
\end{aligned}
$$

By an earlier remark, the solution with $y(1)=5$ and $y^{\prime}(1)=-3$ is

$$
\begin{aligned}
y= & 5 y_{1}-3 y_{2} \\
= & 5-3(x-1)-(x-1)^{2}+\frac{1}{3}(x-1)^{3}+\frac{1}{12}(x-1)^{4} \\
& -\frac{1}{30}(x-1)^{5}+\frac{1}{72}(x-1)^{6}-\frac{11}{840}(x-1)^{7}+\cdots .
\end{aligned}
$$

