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Introduction

Motivating example

Failure of the power series method

Consider the ODE 2xy” 4+ y’ 4+ y = 0. In standard form this is
1

T 2x

’ g(X) :O

In exercise A.4.25 you showed that 1/x is analytic at any a > 0,
with radius R = a. Hence:

Every solution of 2xy” +y’ +y = 0 is analyticat a > 0
with radius R > a (i.e. given by a PS for 0 < x < 2a).

However, since p, g, g are continuous for x > 0, general theory
guarantees that:

Every solution of 2xy” 4+ y’ + y = 0 is defined for all x > 0.

Question: Can we find series solutions defined for all x > 07
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Introduction

Even though p(x) = g(x) = 1/2x is not analytic at a = 0, we
nonetheless assume

y = Za,,x" (with positive radius)

and see what happens. Plugging into the ODE and collecting
common powers of x leads to

_an

S N N |
(hrD@nty) o =7

an4+1 =

and then choosing ag = 1 yields the first solution
—1)on 0 -1 n2n
ap = 7( (2,)7)! Z:;) ) ———x" = cos (\/Z) .
But choosing ag = 0 gives a, = 0 for all n > 0, so that y» = 0.
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Introduction

What now?

To find a second independent solution, we instead assume

o o
y =x" E apx" = g ax™" (ag # 0)
n=0 n=0
—_———
PS with R>0

for some r € R to be determined. Since

[e.e] oo
y' = Z(n + Napx"TTh Y = Z(n +r)(n+r—1)ax"2,
n=0 n=0

plugging into the ODE gives

o0 o0 o
2x Z(n—l—r)(n—l—r—1)a,,x”+’_2—|—Z(n—|—r)anx"+’_1—i-z ax"" = 0.
n=0 n=0 n=0

[BETI[LEY Frobenius’ Method



Introduction

Distributing the 2x and setting m = n — 1 in the first two series

yields

[e.e] o

Z 2(m+r+1)(m+ r)ampx™" + Z (m+1+r)amex™"
m=-—1 m=-—1

o
+ Z anx"" =0
n=0
or, replacing m with n

(2r(r —1) + r)apx!

n=-—1

3 (4 r+1) 0+ 1) + 1) ana + a0) X" =0,
n=0

This requires the coefficients on each power of x to equal zero.
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That is

r2r—1)ay=0 = r(2r—-1)=0 = r=0,

30750 ’

N =

and (n+r+1)(2n+2r+1)as+1 +a, =0, or

a —an for n>0
= r .
"+ r+1)(@2n+2r+1) =
Each value of r gives a different recurrence:
—an
=0 = e
' Ty D@2+ 1)
—ap —ap

1
r=—= = dnt+1 =

2 (n+3/2)2n+2) (2n+3)(n+1)

Notice that the first is the original recurrence!
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Taking ag = 1 in the second we eventually find that

_ (—=1)"2" 1)"2" o 1 .
an—m = y—X1/2Z 2n+1)| _%&n(\/ﬂ).

This gives the second (linearly independent) solution to the ODE,
and we have the general solution

y = C1y1 + Gy» = c1 COs (\/2x) + csin (\/2x) (x > 0).

Remarks:

@ The fact that both series yielded familiar functions is simply a
coincidence, and should not be expected in general.

@ One could also have obtained y» from y; (or vice-verse) using
a technique called reduction of order.
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The “naive” Frobenius method

Method of Frobenius - First Solution

When will the preceding technique work at an “extraordinary”
point? Here's a partial answer:

Theorem

Suppose that at least one of p(x) or g(x) is not analytic at x = 0,
but that both of xp(x) and x?>q(x) are. If

lim xp(x) = po and lim x*q(x) = qo,
x—0 x—0

then there is a solution to y” + p(x)y’ + q(x)y =0 (x > 0) of the
form

y=x"3 ax" (a9 #0),
n=0

where r is a root of the indicial equation re + (po—1)r+qo=0. )

[BETI[LEY Frobenius’ Method



The “naive” Frobenius method

Remarks

@ Under the hypotheses of the theorem, we say that a=0is a
regular singular point of the ODE.
@ Suppose the roots of the indicial equation are r; and r>.

o If n — rn € Z, then both r = r; and r = r, yield (linearly
independent) solutions.

o If n—r, € Z, then only r = max{r, r»} is guaranteed to work.
The other may or may not.

@ If the PS for xp(x) and x?q(x) both converge for |x| < R, so
does the PS factor of y.

@ We can talk about regular singularities at any x = a by
instead considering (x — a)p(x), (x — a)?q(x), lim, and
X—a

writing the solution in powers of (x — a) .
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The “naive” Frobenius method

Find the general solution to x?y" + xy’ + (x —2)y = 0.

In standard form this ODE has

1 X —2
p(X)_; and q(X)_ 2

neither of which is analytic at x = 0. However, both
xp(x) =1 and x?q(x) = x — 2
are analytic at x = 0, so we have a regular singularity with
=i =1 = lim x*q(x) = — 2.
po = lim xp(x) and go = lim x“q(x)
The indicial equation is

P+(1-1)r—-2=0 = r=4V2
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The “naive” Frobenius method

Applying the method of Frobenius, we set
o0 o
y=x" Z apx" = Z apx"" (ag #0)
n=0 n=0
and substitute into the ODE, obtaining
o0
(r? — 2)aox" + Z (((n+r)?>=2) ap+ an_1) x"" = 0.
n=1

Hence we must have r?> — 2 = 0 (which we already knew) and
—dp—1 _ —dp-1
(n+r)>=2  n(n+2r)

Taking ap = 1 one readily sees that

L (-1)"
"ol +2r)2+2r)(3+2r)---(n+2r)

an = for n > 1.
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The “naive” Frobenius method

Since the difference of the roots is v/2 — (—v/2) = 21/2 ¢ Z, the
two r-values give independent solutions:

fz (=1)"x"
(14 2v2)(2 4+ 2v2)(3 +2V2) - - (n + 2V/2)’

T3 (e
- 2/D@2- 2D 2D (n-2V2)

and the general solution (for x > 0) is

Yy =ayr+ ay.

Remark: Because xp(x) = 1 and x?q(x) = x — 2 both have
infinite radius of convergence, so do both series above.
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The general Frobenius method

Method of Frobenius - Second Solution

What do we do if the indicial roots differ by an integer?

Theorem

Suppose that x = 0 is a regular singular point of
y" + p(x)y’ + q(x)y = 0, and that the roots of the indicial
equation are r; and r», with n — r» € Np.

@ If i = rn = r, the second solution has the form

o
Yo =1 Inx—i—xrz bpx".

n=1

@ Ifrn > rp (so that y; uses r1 ), the second solution has the form

00
Yo = kyl Inx + x" Z ann (bo 75 0)
n=0




The general Frobenius method

Find the general solution to xy” + (1 — x)y’ +2y =0, x > 0.

In standard form we have

1—x 2
= d = —
p(x) X and q(x) X

which are non-analytic at x =0, and
xp(x) =1—x and x2q(x) = 2x,
which are. This makes x = 0 a regular singularity with

pp=1Ilml—x=1 and lim2x =0,
x—0 x—0

and indicial equation

P+(1-1)r+0=0 = r=0.
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The general Frobenius method

Since r = 0 is a double root, we are guaranteed only one solution

of the form
o o0
y =x" Zanx” = Zanx".
n=0 n=0
Plugging this into the ODE and simplifying leads to the recursion

(n—2)a,

Wfornzo.
n

an+1 =

Taking ag = 1 we find that

i 230_ 5 —31_1 _O 32_0
ar = 12 - , a2 ? 27 az = 32 ;
and hence a4 = a5 = ag = --- = 0 as well. So our first solution is

2

X
y1:1—2x—|—?.
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The general Frobenius method

According to the theorem, a second independent solution has the
form

o0
Y2 =y |nX—|—XOanX">

n=1
—_———

w

and we need to solve for the b,. The product rule gives us
yézy{lnx—k%—kw',
2 /
yé/zy{’lnx+7 -+,
and plugging these into xy5 + (1 — x)y5 + 2y» = 0 we obtain

(Xy{' +(1—x)y; + 2y1) Inx —y1 +2y; +xw” + (1 — x)w' + 2w = 0,

=0

xw” 4+ (1= x)w’ + 2w = =2y] + y;.
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The general Frobenius method

We now plug y1 = 1 — 2x + x2/2 and w = > 0%, b,x" into this
equation to obtain a recurrence for the b:

S 2
n X
by + z_:l ((n+ 1)2bn+1 —(n— 2)bn) x"=5_4x + =
Hence
and
(n—2)b, 36b;
b1 ="y T b= for n > 3.
+1 (n+1)2 n(n—1)(n—2)n! or n
Thus, since b3 = 1/18,
X2 9 y
y2 ( X + > nx -+ 5x 4X + Z (n—1)(n— 2)n!

" M
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The general Frobenius method

Finally, we have that the general solution is given by

y=ayr+ ay.

Remarks. Regarding the case 1 — r» € Np:

@ When y; has infinitely many nonzero coefficients, the general
recursion for b, will be more complicated.

o If a closed form expression for the coefficients of y; isn't
available, the recursion relations for the a, and b, still allow
us to compute as many terms as we need.

@ Similar computations and comments hold when r — rn € N,
except that one must also solve for k.

@ Because of the In x factor, one can frequently conclude that
ly2| — oo as x — 0T, without explicitly computing the b,,.
This will suffice for our applications.
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