#### An Introduction to Bessel Functions

R. C. Daileda



Trinity University

Partial Differential Equations April 9, 2015

Given  $p \geq 0$ , the ordinary differential equation

$$x^2y'' + xy' + (x^2 - p^2)y = 0, \quad x > 0$$

is known as Bessel's equation of order p. In standard form this has

$$p(x) = \frac{1}{x},$$

$$q(x) = \frac{x^2 - p^2}{x^2}$$

$$\Rightarrow xp(x) = 1,$$

$$x^2q(x) = x^2 - p^2.$$

so that x = 0 is a regular singularity with indicial equation

$$r^2 + (1-1)r - p^2 = 0 \implies r = \pm p$$
.

## The method of Frobenius

Bessel's equation

Consequently, for r = p at least, we know there is a solution of the form

$$y = x^r \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x^{r+n} \quad (a_0 \neq 0),$$

which will converge for all x > 0.

Substituting this into Bessel's equation and collecting terms with common powers of x gives

$$\begin{split} a_0(r^2-p^2)x^r + a_1\left((r+1)^2-p^2\right)x^{r+1} + \\ \sum_{m=2}^{\infty} \left(a_m\left((r+m)^2-p^2\right) + a_{m-2}\right)x^{r+m} = 0. \end{split}$$

Setting the coefficients equal to zero gives the equations

$$a_0(r^2 - p^2) = 0 \implies r = \pm p,$$

$$a_1((r+1)^2 - p^2) = 0 \implies a_1 = 0,$$

$$a_m = \frac{-a_{m-2}}{(r+m)^2 - p^2} = \frac{-a_{m-2}}{m(m+2r)} \quad (m \ge 2).$$

These imply that  $a_1 = a_3 = a_5 = \cdots = a_{2k+1} = 0$  and, taking r = p

$$a_{2k} = \frac{(-1)^k a_0}{2^{2k} k! (1+p)(2+p) \cdots (k+p)}.$$

This gives the first Frobenius solution

$$y_1 = x^p \sum_{k=0}^{\infty} \frac{(-1)^k a_0}{2^{2k} k! (1+p)(2+p) \cdots (k+p)} x^{2k}$$

Bessel functions

Bessel's equation

## The Gamma function

In this case, the standard choice for  $a_0$  involves the Gamma function

$$\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt \quad (s > 0).$$

One can use integration by parts to show that

$$\Gamma(s+1)=s\,\Gamma(s).$$

Applying this repeatedly, we find that for  $k \in \mathbb{N}$ 

$$\Gamma(s+k) = (s+k-1)\Gamma(s+k-1)$$

$$= (s+k-1)(s+k-2)\Gamma(s+k-2)$$

$$= (s+k-1)(s+k-2)(s+k-3)\Gamma(s+k-3)$$

$$\vdots$$

$$= (s+k-1)(s+k-2)(s+k-3)\cdots s\Gamma(s).$$

Bessel functions

This has two nice consequences.

• One can show  $\Gamma(1) = \int_0^\infty e^{-t} dt = 1$ , so setting s = 1 above:

$$\Gamma(k+1) = k(k-1)(k-2)\cdots 1\cdot \Gamma(1) = k!$$

This is why  $\Gamma(s)$  is called the *generalized factorial*.

• Setting s = p + 1 above:

$$\Gamma(p+1+k) = (p+k)(p+k-1)\cdots(p+1)\Gamma(p+1)$$

or

$$\frac{1}{(1+p)(2+p)\cdots(k+p)} = \frac{\Gamma(p+1)}{\Gamma(k+p+1)}.$$

### Bessel functions of the first kind

Bessel's equation

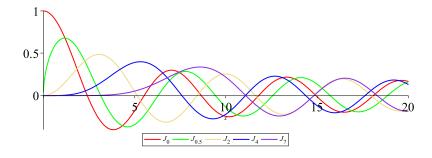
Returning to Bessel's equation, we find that the first Frobenius solution can be written

$$y_1 = x^p \sum_{k=0}^{\infty} \frac{(-1)^k a_0}{2^{2k} k! (1+p)(2+p) \cdots (k+p)} x^{2k}$$
$$= 2^p \Gamma(p+1) a_0 \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(k+p+1)} \left(\frac{x}{2}\right)^{2k+p}.$$

Taking  $a_0 = \frac{1}{2^p \Gamma(p+1)}$  yields the Bessel function of the first kind of order p:

$$J_{p}(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k! \, \Gamma(k+p+1)} \left(\frac{x}{2}\right)^{2k+p}.$$

## Graphs of Bessel functions of the first kind



In Maple, the functions  $J_p(x)$  can be invoked by the command  ${\tt BesselJ(p,x)}$ 

- $J_0(0) = 1$  and  $J_p(0) = 0$  for p > 0.
- The values of  $J_p$  always lie between 1 and -1.
- ullet  $J_p$  has infinitely many positive zeros, which we denote by

$$0<\alpha_{p1}<\alpha_{p2}<\alpha_{p3}<\cdots$$

•  $J_p$  is oscillatory and tends to zero as  $x \to \infty$ . More precisely,

$$J_p(x) \sim \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{p\pi}{2} - \frac{\pi}{4}\right).$$

 $\bullet \lim_{n\to\infty} |\alpha_{pn} - \alpha_{p,n+1}| = \pi .$ 

- For 1 < p, the graph of  $J_p$  has a horizontal tangent line at x = 0, and the graph is initially "flat."
- For some values of p, the Bessel functions of the first kind can be expressed in terms of familiar functions, e.g.

$$J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x,$$

$$J_{5/2}(x) = \sqrt{\frac{2}{\pi x}} \left( \left( \frac{3}{x^2} - 1 \right) \sin x - \frac{3}{x} \cos x \right).$$

- Frobenius' method yields a second linearly independent solution  $y_2$  of Bessel's equation.
- Although the exact form of  $y_2$  depends on the value of p, it is not hard to argue that in any case  $\lim_{x\to 0^+} |y_2| = \infty$ .
- Since  $\lim_{x\to 0^+} J_p(x)$  is finite, it follows that any linearly independent solution  $Y_p(x)$  must also satisfy

$$\lim_{x\to 0^+}|Y_p(x)|=\infty.$$

• The standard normalization of  $Y_p$  is called the Bessel function of the second kind. We won't explicitly need it.

Using the series definition of  $J_p(x)$ , one can show that:

$$\frac{d}{dx}(x^{p}J_{p}(x)) = x^{p}J_{p-1}(x), 
\frac{d}{dx}(x^{-p}J_{p}(x)) = -x^{-p}J_{p+1}(x).$$
(1)

The product rule and cancellation lead to

$$xJ'_{p}(x) + pJ_{p}(x) = xJ_{p-1}(x),$$
  
 $xJ'_{p}(x) - pJ_{p}(x) = -xJ_{p+1}(x).$ 

Addition and subtraction of these identities then yield

$$J_{p-1}(x) - J_{p+1}(x) = 2J'_p(x),$$
  
 $J_{p-1}(x) + J_{p+1}(x) = \frac{2p}{x}J_p(x).$ 

Integration of the differentiation identities (1) gives

$$\int x^{p+1} J_p(x) dx = x^{p+1} J_{p+1}(x) + C$$
$$\int x^{-p+1} J_p(x) dx = -x^{-p+1} J_{p-1}(x) + C.$$

- Exercises 4.2.12 and 4.3.9 give similar identities.
- Identities such as these can be used to evaluate certain integrals of the form

$$\int_0^a f(r)J_m(\lambda_{mn}r)r\,dr,$$

which will occur frequently in later work.

Bessel functions

Bessel's equation

#### **Evaluate**

$$\int x^{p+5} J_p(x) dx.$$

We integrate by parts, first taking

$$u = x^4$$
  $dv = x^{p+1} J_p(x) dx$   
 $du = 4x^3 dx$   $v = x^{p+1} J_{p+1}(x),$ 

which gives

$$\int x^{p+5} J_p(x) dx = x^{p+5} J_{p+1}(x) - 4 \int x^{p+4} J_{p+1}(x) dx.$$

Now integrate by parts again with

$$u = x^{2}$$

$$dv = x^{p+2}J_{p+1}(x) dx$$

$$du = 2x dx$$

$$v = x^{p+2}J_{p+2}(x),$$

to get

Bessel's equation

$$\int x^{p+5} J_{\rho}(x) dx = x^{p+5} J_{\rho+1}(x) - 4 \int x^{p+4} J_{\rho+1}(x) dx$$

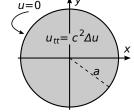
$$= x^{p+5} J_{\rho+1}(x) - 4 \left( x^{p+4} J_{\rho+2}(x) - 2 \int x^{p+3} J_{\rho+2}(x) dx \right)$$

$$= x^{p+5} J_{\rho+1}(x) - 4x^{p+4} J_{\rho+2}(x) + 8x^{p+3} J_{\rho+3}(x) + C.$$

# Return of the vibrating circular membrane

Recall that the vibrating circular membrane problem

$$\begin{split} u_{tt} &= c^2 \Delta u = c^2 \left( u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} \right), \\ 0 &< r < a, \ 0 < \theta < 2\pi, \ t > 0, \end{split}$$



$$u(a, \theta, t) = 0, \quad 0 \le \theta \le 2\pi, \quad t > 0,$$

led to the separated ODE boundary value problem

$$r^2R'' + rR' + (\lambda^2r^2 - \mu^2)R = 0$$
,  $R(0+)$  finite,  $R(a) = 0$ ,  $\Theta'' + \mu^2\Theta = 0$ ,  $\Theta$   $2\pi$ -periodic,  $T'' + c^2\lambda^2T = 0$ ,

and that the solutions to the  $\Theta$  problem are

$$\Theta(\theta) = \Theta_m(\theta) = A\cos(m\theta) + B\sin(m\theta), \quad \mu = m \in \mathbb{N}_0.$$

In the homework you showed that  $\lambda=0$  implies  $R\equiv 0$ , so we are faced with solving the parametric Bessel equation

$$r^2R'' + rR' + (\lambda^2r^2 - m^2)R = 0 \quad (\lambda > 0)$$
 (2)

subject to the boundary conditions

$$R(0+)$$
 finite,  $R(a) = 0$ .

If we let  $x = \lambda r$ , then the chain rule implies

$$R' = \frac{dR}{dr} = \frac{dR}{dx} \frac{dx}{dr} = \lambda \dot{R},$$

$$R'' = \frac{dR'}{dr} = \lambda \frac{d\dot{R}}{dr} = \lambda \frac{d\dot{R}}{dx} \frac{dx}{dr} = \lambda^2 \ddot{R}.$$

Hence (2) becomes

$$x^2\ddot{R} + x\dot{R} + (x^2 - m^2)R = 0,$$

which is Bessel's equation of order m.

It follows that

Bessel's equation

$$R = c_1 J_m(x) + c_2 Y_m(x) = c_1 J_m(\lambda r) + c_2 Y_m(\lambda r).$$

Because  $\lim_{\xi \to 0^+} |Y_m(\xi)| = \infty$ , we find that

$$R(0+)$$
 finite  $\Rightarrow c_2 = 0 \Rightarrow R = c_1 J_m$ ,  
 $R(a) = 0 \Rightarrow R(a) = c_1 J_m(\lambda a) = 0 \Rightarrow J_m(\lambda a) = 0$   
 $\Rightarrow \lambda a = \alpha_{mn}, \quad n \in \mathbb{N}$   
 $\Rightarrow \lambda = \lambda_{mn} = \frac{\alpha_{mn}}{a}, \quad n \in \mathbb{N}$ 

Choosing  $c_1 = 1$ , we find that

$$R(r) = R_{mn}(r) = J_m(\lambda_{mn}r) = J_m\left(\frac{\alpha_{mn}r}{2}\right) \quad m \in \mathbb{N}_0, \ n \in \mathbb{N}.$$

# Normal modes of the vibrating circular membrane

Returning to T (which solves  $T'' + c^2 \lambda^2 T = 0$ ), we finally find

$$T(t) = T_{mn}(t) = C \cos(c\lambda_{mn}t) + D \sin(c\lambda_{mn}t)$$
.

and arrive at the normal modes for the vibrating circular membrane:  $u_{mn}(r, \theta, t) = R_{mn}(r)\Theta_m(\theta)T_{mn}(t) =$ 

$$J_{m}(\lambda_{mn}r)(A\cos(m\theta)+B\sin(m\theta))(C\cos(c\lambda_{mn}t)+D\sin(c\lambda_{mn}t)),$$

for  $m \in \mathbb{N}_0$ ,  $n \in \mathbb{N}$ .

Bessel's equation

Note that, up to scaling, rotation and a phase shift in time, these have the form

$$u(r, \theta, t) = J_m(\lambda_{mn}r) \cos(m\theta) \cos(c\lambda_{mn}t).$$