

Introduction to Abstract Mathematics Spring 2017

Assignment 3.1 Due February 3

Remark: Throughout these exercises the word "implies" is used in the meta-language sense, and should not be confused with the symbol \Rightarrow .

Exercise 1. Let *H* and *C* be (compound symbolic) statements. Show that *H* implies *C* if and only if $H \Rightarrow C$ is a tautology.

Exercise 2. [*Proof by contradiction*] Let H, C and X be statements. Suppose that X is a contradiction (i.e. X is always false). Show that if $H \land (\neg C)$ implies X, then H implies C.

Exercise 3. Let A, B and C be symbolic statements built from statement variables and logical connectives. Show that if A implies B, then $B \Rightarrow C$ implies $A \Rightarrow C$.

Exercise 4. Prove that if n as an even integer, then so is n^2 .

Exercise 5. Suppose that a and b are real numbers. Prove that if a < b, then $a < \frac{a+b}{2} < b$.

Exercise 6. Textbook exercises 3.1.12 and 3.1.15