Introduction to Abstract Mathematics
Assignment 3.2 SpRING 2017

Due February 3

Exercise 1. Prove that if m and n are consecutive integers, then exactly one of them is even and the other is odd.

Exercise 2.(Arithmetic Mean-Geometric Mean Inequality) Prove that if a and b are distinct nonnegative real numbers, then

$$
\sqrt{a b}<\frac{a+b}{2}
$$

i.e. that the geometric (multiplicative) mean is always less than the arithmetic (additive) mean.

Exercise 3. Suppose that x and y are real numbers. Prove that if $x^{2} y=2 x+y$, then $y \neq 0$ implies $x \neq 0$.

Exercise 4. Suppose that x and y are real numbers, that $x+y=2 y-x$, and that x and y aren't both zero. Prove that $y \neq 0$.

