Introduction to Abstract Mathematics
Assignment 3.3 SpRING 2017

Exercise 1. Find a contradiction-free proof that $x^{2}=4 y+2$ has no integer solutions.

Exercise 2. Let a, b and c be integers. Show that if $a^{2}+b^{2}=c^{2}$, then a or b is even.

Exercise 3. Show that $x^{2}=4 y+3$ has no integer solutions.

Exercise 4. Show that the polynomial $x^{3}+x+1$ does not have rational roots.

Exercise 5. Euclid's proof that there are infinitely many prime numbers (p. 4) is presented as a proof by contradiction, but it really isn't. What Euclid's technique actually establishes is that if there are at least n prime numbers, then there are at least $n+1$ of them. Why does this show that there are infinitely many prime numbers?

