Exercise 1. Conjecture and prove a formula for the sum of the first n Fibonacci numbers.

Exercise 2. For $n \geq 1$, the nth harmonic number is defined to be

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k} .
$$

Prove that for all $n \geq 0, H_{2^{n}} \geq 1+\frac{n}{2}$.

Exercise 3. Show that for any integer $n \geq 1$,

$$
2 \cos \frac{\pi}{2^{n+1}}=\underbrace{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}}}}}_{n \text { twos }}
$$

[Suggestion: Use the half angle formula $2 \cos ^{2} \theta=1+\cos 2 \theta$.]

Exercise 4. What is wrong with the following "proof" that all M\&Ms have the same color?
We will prove that all the M\&Ms in any (finite) group of M\&Ms have a single color, which implies the result. To do so we induct on n, the number of M\&Ms in a group. If $n=1$, then since every M\&M has the same color as itself, the result is true. Now suppose that, for some n, we have proven that every M\&M in a group of $n \mathrm{M} \& \mathrm{Ms}$ has the same color. Consider a group of $n+1 \mathrm{M} \& \mathrm{Ms}$. By the inductive hypothesis, the first $n \mathrm{M} \& \mathrm{Ms}$ in this group all have the same color, and the last n also all have the same color. Since the nth M\&M is in both groups, all $n+1$ M\&Ms must have its color, and hence the whole group has a single color. By induction, this completes the proof.

