Exercise 1. Let x and y be real numbers. Use the hint of exercise 6.1 .12 to prove that

$$
x^{n}-y^{n}=(x-y) \sum_{k=0}^{n-1} x^{n-k-1} y^{k}=(x-y)\left(x^{n-1}+x^{n-2} y+\cdots+x y^{n-2}+y^{n-1}\right)
$$

for all $n \in \mathbb{N}$.

Exercise 2. Let F_{n} denote the nth Fibonacci number (where, as in class, we set $F_{0}=0$ and $F_{1}=1$). Prove that for all $n \geq 0$,

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right) .
$$

Exercise 3. Textbook exercise 6.1.7.

Exercise 4. Textbook exercise 6.2.12. [Suggestion: See Example 6.2.4.]

