Introduction to Abstract Mathematics
Spring 2017

Proposition. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{2 n+1}$ be elements of a commutative ring. If

$$
S_{k}=\sum_{j=1}^{k}(-)^{j+1} a_{j} . .^{*}
$$

then

$$
\begin{equation*}
\sum_{j=1}^{2 n+1}(-)^{j+1} a_{j}^{2}=S_{2 n+1}^{2}+2 \sum_{j=1}^{n} S_{2 j}\left(a_{2 j}-a_{2 j+1}\right) \tag{1}
\end{equation*}
$$

Proof. We apply summation by part to the left hand side of the identity. This yields

$$
\begin{align*}
\sum_{j=1}^{2 n+1}(-)^{j+1} a_{j}^{2} & =\sum_{j=1}^{2 n+1}\left((-)^{j+1} a_{j}\right) a_{j} \\
& =\sum_{j=1}^{2 n+1}\left(S_{j}-S_{j-1}\right) a_{j} \\
& =\sum_{j=1}^{2 n+1} S_{j} a_{j}-\sum_{j=1}^{2 n+1} S_{j-1} a_{j} \\
& =S_{2 n+1} a_{2 n+1}+\sum_{j=1}^{2 n} S_{j} a_{j}-\sum_{j=1}^{2 n} S_{j} a_{j+1} \\
& =S_{2 n+1}\left(S_{2 n+1}-S_{2 n}\right)+\sum_{j=1}^{2 n} S_{j}\left(a_{j}-a_{j+1}\right) \\
& =S_{2 n+1}^{2}-S_{2 n+1} S_{2 n}+\sum_{j=1}^{2 n} S_{j}\left(a_{j}-a_{j+1}\right) \tag{2}
\end{align*}
$$

Now notice that for any $k \geq 1$

$$
\begin{aligned}
S_{k+1} S_{k} & =\left(S_{k}+(-)^{k} a_{k+1}\right)\left(S_{k-1}+(-)^{k+1} a_{k}\right) \\
& =S_{k} S_{k-1}+(-)^{k+1} S_{k} a_{k}+(-)^{k} S_{k-1} a_{k+1}-a_{k} a_{k+1}{ }^{* *} \\
& =S_{k} S_{k-1}+(-)^{k+1} S_{k} a_{k}+S_{k}(-)^{k} a_{k+1} \\
& =S_{k} S_{k-1}+(-)^{k+1} S_{k}\left(a_{k}-a_{k+1}\right)
\end{aligned}
$$

Applying this successively to $S_{2 n+1} S_{2 n}, S_{2 n} S_{2 n-1}, S_{2 n-1} S_{2 n-2}, \ldots, S_{2} S_{1}$ in (2) will alternately double an even indexed term in the sum and then cancel an odd indexed one, leaving us with the right hand side of (1) plus $S_{1} S_{0}$. Since $S_{0}=0$, this completes the proof.

[^0]Exercise 3. Prove that for any decreasing sequence $a_{1}, a_{2}, \ldots, a_{2 n+1}$ of real numbers one has

$$
a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-\cdots+a_{2 n+1}^{2} \geq\left(a_{1}-a_{2}+a_{3}-\cdots+a_{2 n+1}\right)^{2} .
$$

Proof. This is immediate from the result above since all of the terms in the sum on the right hand side of (1) are nonnegative in this case.

[^0]: ${ }^{*}$ We have used the somewhat awkward notation $(-)^{k} b$ to simply indicate k negations of b. In particular, $(-)^{k} b=b$ if k is even, while $(-)^{k} b=-b$ when k is odd. If we knew that the ring under consideration had an identity, a more natural way to write this would be the more familiar $(-1)^{k} b$.
 ${ }^{* *}$ This is the only point at which we are forced to use commutativity.

