Introduction to Abstract Mathematics Spring 2017

Assignment 5.1
Due February 17

Exercise 1. Suppose you are given a rectangular chocolate bar made up of $m \times n$ squares of chocolate $(m, n \geq 1)$. Your task is to divide it into $m n$ individual squares by breaking it (or any of the intermediate pieces) along any of its horizontal or vertical perforations. An example in the 2×2 case is shown below.

Prove that no matter how you choose to break the chocolate bar, it will always require exactly $m n-1$ breaks.

Exercise 2. Prove that for any $m, n \in \mathbb{N}_{0}$ one has

$$
F_{m+n}=F_{m} F_{n+1}+F_{m-1} F_{n},
$$

where F_{k} denotes the k th Fibonacci number (recall that we defined $F_{-1}=1$). ${ }^{1}$ [Suggestion: As we discussed in class, begin by choosing an arbitrary $m \geq 0$, and then induct on n.]

Exercise 3. Let F_{n} denote the nth Fibonacci number. Prove that for all $m, n \geq 1$, if m divides n, then F_{m} divides F_{n}. [Suggestion: Instead prove that F_{m} divides $F_{k m}$ for all $k, m \geq 1$ (why is this equivalent?). Take advantage of Exercise 2.]

[^0]
[^0]: ${ }^{1}$ More generally, one can show that $F_{n}=F_{a} F_{b}+F_{c} F_{d}$ whenever $n=a+b-1=c+d+1$.

