

Introduction to Abstract Mathematics Spring 2017

Assignment 6.1 Due February 27

Exercise 1. Suppose that T is a nonempty subset of \mathbb{Z} that is *bounded below*, i.e. there is an integer m so that $m \leq n$ for all $n \in T$. Show that T has a least element. [Suggestion: Add 1 - m to every element of T to obtain a nonempty subset of \mathbb{N} , and apply the Well-Ordering Principle.]

Exercise 2. Prove that for all $n \ge 1$,

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}.$$

Exercise 3. For $n \ge 1$ let H_n denote the *n*th harmonic number, as defined in exercise 4.1.2. Prove that for all $n \ge 2$,

$$\sum_{k=1}^{n-1} H_k = nH_n - n.$$