

Introduction to Abstract Mathematics Spring 2017

Assignment 6.1
Due February 27

Exercise 1. Suppose that T is a nonempty subset of \mathbb{Z} that is bounded below, i.e. there is an integer m so that $m \leq n$ for all $n \in T$. Show that T has a least element. [Suggestion: Add $1-m$ to every element of T to obtain a nonempty subset of \mathbb{N}, and apply the Well-Ordering Principle.]

Exercise 2. Prove that for all $n \geq 1$,

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2 n-1}-\frac{1}{2 n}=\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{2 n}
$$

Exercise 3. For $n \geq 1$ let H_{n} denote the nth harmonic number, as defined in exercise 4.1.2. Prove that for all $n \geq 2$,

$$
\sum_{k=1}^{n-1} H_{k}=n H_{n}-n
$$

