

Introduction to Abstract Mathematics Spring 2017

Assignment 7.1 Due March 3

Exercise 1. Let $a, b, c \in \mathbb{Z}$. Verify the following properties of divisibility.

- **a.** Every integer $n \neq 0, \pm 1$ is divisible by a prime.
- **b.** If a|b and a|c, then a|(xb + yc) for all $x, y \in \mathbb{Z}$.
- **c.** If a|b and a|b+1, then $a = \pm 1$.
- **d.** If a|b and b|c, then a|c.

Exercise 2. Let S be a subset of \mathbb{Z} and suppose S is *bounded above*, i.e. there exists an $M \in \mathbb{Z}$ so that $n \leq M$ for all $n \in S$. Prove that if S is nonempty, then S has a greatest element. [Suggestion: Consider the set $-S = \{-n \mid n \in S\}$ and apply exercise 6.1.1.]

Exercise 3. Show that there are infinitely many integers that are divisible by 5 but leave a remainder of 2 when divided by 3.