Introduction to Abstract Mathematics
Spring 2017
Assignment 7.1
Due March 3

Exercise 1. Let $a, b, c \in \mathbb{Z}$. Verify the following properties of divisibility.
a. Every integer $n \neq 0, \pm 1$ is divisible by a prime.
b. If $a \mid b$ and $a \mid c$, then $a \mid(x b+y c)$ for all $x, y \in \mathbb{Z}$.
c. If $a \mid b$ and $a \mid b+1$, then $a= \pm 1$.
d. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Exercise 2. Let S be a subset of \mathbb{Z} and suppose S is bounded above, i.e. there exists an $M \in Z$ so that $n \leq M$ for all $n \in S$. Prove that if S is nonempty, then S has a greatest element. [Suggestion: Consider the set $-S=\{-n \mid n \in S\}$ and apply exercise 6.1.1.]

Exercise 3. Show that there are infinitely many integers that are divisible by 5 but leave a remainder of 2 when divided by 3 .

