Introduction to Abstract Mathematics Spring 2017

AsSIGNMENT 7.2

Due March 3

Exercise 1. For each pair a, b, find $\operatorname{gcd}(a, b)$ as well as x and y so that $\operatorname{gcd}(x, y)=x a+y b$.
a. 14,23
b. 130,150
c. 34,144

Exercise 2. Let $p, q \in \mathbb{N}$ be distinct primes. Prove that there exist $x, y \in \mathbb{Z}$ so that $x p+y q=1$.

Exercise 3. Let F_{n} denote the nth Fibonacci number. Prove that for any $a, b \in \mathbb{N}, F_{\operatorname{gcd}(a, b)}$ divides $\operatorname{gcd}\left(F_{a}, F_{b}\right)$. [Suggestion:: Use exercise 5.1.3.]

