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Vibrating membranes

Goal: Model the motion of an ideal elastic membrane.

Set up: Assume the membrane at rest is a region of the xy -plane
and let

u(x , y , t) =

{
vertical deflection of membrane from equilib-
rium at position (x , y) and time t.

For a fixed t, the surface z = u(x , y , t) gives the shape of the
membrane at time t.

Under ideal assumptions (e.g. uniform membrane density, uniform
tension, no resistance to motion, small deflection, etc.) one can
show that u satisfies the two dimensional wave equation

utt = c2∆u = c2(uxx + uyy ).
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Rectangular membranes

We assume the membrane lies over the rectangular region
R = [0, a]× [0, b] and has fixed edges.

These facts are expressed by the boundary conditions

u(0, y , t) = u(a, y , t) = 0, 0 ≤ y ≤ b, t > 0,

u(x , 0, t) = u(x , b, t) = 0, 0 ≤ x ≤ a, t > 0.
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We must also specify how the membrane is initially deformed and
set into motion. This is done via the initial conditions

u(x , y , 0) = f (x , y), (x , y) ∈ R ,

ut(x , y , 0) = g(x , y), (x , y) ∈ R .

New goal: solve the 2-D wave equation subject to the boundary
and initial conditions just given.

As usual, we will:

Use separation of variables to find separated solutions
satisfying the homogeneous boundary conditions; and

Use the principle of superposition to build up a series solution
that satisfies the initial conditions as well.

Daileda The 2-D wave equation



The 2D wave equation Separation of variables Superposition Examples

Separation of variables

We seek nontrivial solutions of the form

u(x , y , t) = X (x)Y (y)T (t).

Plugging this into utt = c2(uxx + uyy ) we get

XYT ′′ = c2
(
X ′′YT + XY ′′T

)
⇒ T ′′

c2T
=

X ′′

X
+

Y ′′

Y
.

Because the two sides are functions of different independent
variables, they must be constant:

T ′′

c2T
= A =

X ′′

X
+

Y ′′

Y
⇒







T ′′ − c2AT = 0,

X ′′

X
= −Y ′′

Y
+ A.
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Since the two sides again involve unrelated variables, both are
constant:

X ′′

X
= B = −Y ′′

Y
+ A.

Setting C = A− B , these equations can be rewritten as

X ′′ − BX = 0, Y ′′ − CY = 0.

The first boundary condition is

0 = u(0, y , t) = X (0)Y (y)T (t).

Canceling Y and T yields X (0) = 0. Likewise, we obtain

X (a) = 0, Y (0) = Y (b) = 0.

There are no boundary conditions on T .
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We have already solved the two boundary value problems for X
and Y . The nontrivial solutions are

X = Xm(x) = sin(µmx), µm =
mπ

a
, m ∈ N,

Y = Yn(y) = sin(νny), νn =
nπ

b
, n ∈ N,

with separation constants B = −µ2
m and C = −ν2n .

Since T ′′ − c2AT = 0, and A = B + C = −
(
µ2
m + ν2n

)
< 0,

T = Tmn(t) = Bmn cos(λmnt) + B∗

mn sin(λmnt),

where

λmn = c

√

µ2
m + ν2n = cπ

√

m2

a2
+

n2

b2
.

These are the characteristic frequencies of the membrane.
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Normal modes

Assembling our results, we find that for any pair m, n ∈ N we have
the normal mode

umn(x , y , t) = Xm(x)Yn(y)Tmn(t)

= sin(µmx) sin(νny) (Bmn cos(λmnt) + B∗

mn sin(λmnt))

= Amn sin(µmx) sin(νny) cos(λmnt − φmn)

Remarks: Note that the normal modes:

oscillate spatially with frequency µm = m/2a in the
x-direction,

oscillate spatially with frequency νn = n/2b in the y -direction,

oscillate temporally with frequency λmn/2π.

While µm and νn are simply multiples of π/a and π/b,
respectively, λmn is not a multiple of any basic frequency.
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Superposition and initial conditions

Superposition gives the general solution

u(x , y , t) =
∞∑

n=1

∞∑

m=1

sin(µmx) sin(νny) (Bmn cos(λmnt) + B∗

mn sin(λmnt)) .

The initial conditions will determine the coefficients Bmn and B∗

mn.
Setting t = 0 yields

f (x , y) = u(x , y , 0) =
∞∑

n=1

∞∑

m=1

Bmn sin
(mπ

a
x
)

sin
(nπ

b
y
)

,

g(x , y) = ut(x , y , 0) =

∞∑

n=1

∞∑

m=1

λmnB
∗

mn sin
(mπ

a
x
)

sin
(nπ

b
y
)

.

These are examples of double Fourier series.
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Representability
Which functions are given by double Fourier series?

The following result partially answers this first question.

Theorem

If f (x , y) is a C 2 function on the rectangle [0, a]× [0, b], then

f (x , y) =
∞∑

n=1

∞∑

m=1

Bmn sin
(mπ

a
x
)

sin
(nπ

b
y
)

,

for appropriate Bmn.

To say that f (x , y) is a C 2 function means that f as well as
its first and second order partial derivatives are all continuous.

While not as general as the Fourier representation theorem,
this result is sufficient for our applications.
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Orthogonality (again!)
How can we compute the coefficients in a double Fourier series?

The following result helps us answer this second question.

Theorem

The functions

Zmn(x , y) = sin
(mπ

a
x
)

sin
(nπ

b
y
)

, m, n ∈ N

are pairwise orthogonal relative to the inner product

〈f , g〉 =
∫ a

0

∫ b

0

f (x , y)g(x , y) dy dx .

This is easily verified using the orthogonality of the functions
sin(nπx/p) on the interval [0, p].
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Using the usual argument, it follows that if

f (x , y) =
∞∑

n=1

∞∑

m=1

Bmn sin
(mπ

a
x
)

sin
(nπ

b
y
)

︸ ︷︷ ︸

Zmn

,

then

Bmn =
〈f ,Zmn〉

〈Zmn,Zmn〉
=

∫ a

0

∫ b

0

f (x , y)Zmn(x , y) dy dx

∫ a

0

∫ b

0

Zmn(x , y)
2 dy dx

=
4

ab

∫ a

0

∫ b

0

f (x , y) sin
(mπ

a
x
)

sin
(nπ

b
y
)

dy dx .

So, we can finally write down the complete solution to our original
problem.
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Conclusion

Theorem

Suppose that f (x , y) and g(x , y) are C 2 functions on the rectangle

[0, a]× [0, b]. The solution to the vibrating membrane problem is

given by u(x , y , t) =

∞∑

n=1

∞∑

m=1

sin(µmx) sin(νny) (Bmn cos(λmnt) + B∗

mn sin(λmnt))

where µm = mπ

a
, νn = nπ

b
, λmn = c

√

µ2
m + ν2n , and

Bmn =
4

ab

∫ a

0

∫ b

0

f (x , y) sin(µmx) sin(νny) dy dx ,

B∗

mn =
4

abλmn

∫ a

0

∫ b

0

g(x , y) sin(µmx) sin(νny) dy dx .
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Example

A 2× 3 rectangular membrane has c = 6. If we deform it to have

shape given by

f (x , y) = xy(2− x)(3− y),

keep its edges fixed, and release it at t = 0, find an expression that

gives the shape of the membrane for t > 0.
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We must compute the coefficients Bmn and B∗

mn. Since
g(x , y) = 0 we immediately have

B∗

mn = 0.

We also have

Bmn =
4

2 · 3

∫ 2

0

∫ 3

0

xy(2− x)(3 − y) sin
(mπ

2
x
)

sin
(nπ

3
y
)

dy dx

=
2

3

∫ 2

0

x(2 − x) sin
(mπ

2
x
)

dx

∫ 3

0

y(3− y) sin
(nπ

3
y
)

dy

=
2

3

(
16(1 + (−1)m+1)

π3m3

) (
54(1 + (−1)n+1)

π3n3

)

=
576

π6

(1 + (−1)m+1)(1 + (−1)n+1)

m3n3
.
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The coefficients λmn are given by

λmn = c

√

µ2
n + ν2n = 6π

√

m2

4
+

n2

9
= π

√

9m2 + 4n2.

Assembling all of these pieces yields

u(x , y , t) =
576

π6

∞∑

n=1

∞∑

m=1

(
(1 + (−1)m+1)(1 + (−1)n+1)

m3n3
sin

(mπ

2
x
)

× sin
(nπ

3
y
)

cos
(

π
√

9m2 + 4n2 t
))

.
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Example

Suppose in the previous example we also impose an initial velocity

given by g(x , y) = 8 sin 2πx . Find an expression that gives the

shape of the membrane for t > 0.

Since we have the same initial shape, Bmn don’t change. We only
need to find B∗

mn and add the appropriate terms to the previous
solution.

Using λmn computed above, we have

B∗

mn =
4

2 · 3π
√
9m2 + 4n2

∫ 2

0

∫ 3

0

8 sin(2πx) sin
(mπ

2
x
)

sin
(nπ

3
y
)

dy dx

=
16

3π
√
9m2 + 4n2

∫ 2

0

sin(2πx) sin
(mπ

2
x
)

dx

∫ 3

0

sin
(nπ

3
y
)

dy .

The first integral is zero unless m = 4, i.e. B∗

mn = 0 for m 6= 4.
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Evaluating the second integral, we have

B∗

4n =
8

3π
√
36 + n2

3(1 + (−1)n+1)

nπ
=

8(1 + (−1)n+1)

π2n
√
36 + n2

.

So the velocity dependent term of the solution is

u2(x , y , t) =

∞∑

m=1

∞∑

n=1

B∗

mn sin (µmx) sin (νny) sin (λmnt)

=
8 sin(2πx)

π2

∞∑

n=1

1 + (−1)n+1

n
√
36 + n2

sin
(nπ

3
y
)

sin
(

2π
√

36 + n2t
)

.

If we let u1(x , y , t) denote the solution to the first example, the
complete solution here is

u(x , y , t) = u1(x , y , t) + u2(x , y , t).
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