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Changing to polar coordinates

Polar coordinates

To solve boundary value problems on circular regions, it is
convenient to switch from rectangular (x,y) to polar (r,8) spatial
coordinates:

X = rcos@,
y =rsinf,
o
< :y
; . 2 2 _ 2
. - XSty =r-.
SNl

This requires us to express the rectangular Laplacian
Au = Uy + uyy

in terms of derivatives with respect to r and 6.
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Changing to polar coordinates

The chain rule
For any function f(r, ), we have the familiar tree diagram and
chain rule formulae:

or _oror o
Ox  Ordx 00 0x
f of _ofor ofon
/\ dy _ ordy | 000y
r 6 or
X 'y x y fio = frrc + fobx

fy = frry + foby
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Changing to polar coordinates

First take f = u to obtain
Ux = Uprx + Uty = Uxx = Urhx + (Ur)xrx + ugbxx + (UG)XHX'
Applying the chain rule with f = u, and then with f = uy yields

Uxx = Urlxx + (Urrrx + UrQHx) I + upOxx + (Uerrx + U969x) O«

= Urhox + Up 12 + 2upg Oy + UgBiex + g0
An entirely similar computation using y instead of x also gives
Uy = Urlyy + u,,rf +2upgr 0y + ugby, + u@90§.
If we add these expressions and collect like terms we get
Au=u (r + ryy) + Upr (rf + rf) + 2upg (rOx + r,0))

+ U (Ox + Oy ) + ugg (602 +65) .
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Changing to polar coordinates

Differentiate x> + y? = r? with respect to x and then y:

X r—xre rP—x%> y?
2X =211 = Ix=— = I = 7 = T = 3
r r r r
2 2 2
y r—yr, rc—y X
2y =2rr, = == = r, = = = —.
y y =5 Yy 2 3 3

Now differentiate tand = 2 with respect to x and then y:
X

2
2 _ Y _ ycoscf y 2y 2xy
seclth= =G F =T = T = =T
1 cos?f  x —2x 2xy
2
sec 90y:; = 0, = IR = nyzjry:_j.

Daileda Polar coordinates



Changing to polar coordinates

Together these yield

2 2 2
v+ x 1 x4y
rXX+ryy: r3 :;, r)%JrI’f: r2 1
2xy 2xy 5 5 y? 4 x2 1
QXX—I-ny r4 + —0, 9X+0y: r4 = r—z’
X
R+ 18y = — +L_Q

and we finally obtain

Au=u (r + ryy) + Upr (rf + rf) + 2upg (rx + r,0))
+ tg (Ox + Oyy) + ugg (03 + 63)

1 1 1
=—Ur+ Uy + —5 Upe = Urr + —ur+ —5 U
r r r r
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Changing to polar coordinates

Yy
x2 + y2

Use polar coordinates to show that the function u(x,y) =

is harmonic.

We need to show that Au = 0. In polar coordinates we have

rsin@ B sin@

u(r,f)= —— = —
(r.0) r2 r
so that
B sinf B 2sin6 B —sinf
ur = — 2 = "3 Upg = PR
and thus
1 1 2sinf sin@ sin6
Au:u,,—i—fu,—i——zueg: T 3 — 3 =0.
r r r r r

[BETILLE Polar coordinates



The Dirichlet problem on a disk

The Dirichlet problem on a disk

Goal: Solve the Dirichlet problem on a disk of radius a, centered
at the origin. In polar coordinates this has the form

u=f y
1 1
AU:Urr‘f’*ur‘i‘*2u99:07 0§r<a, ( \—
r r Aul=0
X
u(a,f) = f(8), 0<6<2m. Kﬂ

Remarks:

@ We will require that f is 2m-periodic.

o Likewise, we require that u(r, ) is 2m-periodic in 6.
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The Dirichlet problem on a disk
Separation of variables

If we assume that u(r,0) = R(r)©(f) and plug into Au =0, we

get
Rl/ Rl el/
/" / " 27 o ~
R"© + - R@+ R@—0:>rR+rR+@ =0
1" R o
2
— tr—=——=\
= r R—l—rR o

This yields the pair of separated ODEs
PR+ R —AR=0 and ©"+X0=0.
We also have the “boundary conditions”

© is 2m-periodic and R(0+) is finite.
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The Dirichlet problem on a disk

Solving for ©

The solutions of ©” + A\@ = 0 are periodic only if

A=u?>0 = O =acos(ub)+ bsin(ub).
In order for the period to be 27 we also need

1 =cos(0u) = cos(2mp) = 2mp=27mn = p=né€ Np.

Hence A = n? and

© = 0O, = a,cos(nf) + bpsin(nd), n e Ny.
It follows that R satisfies

rPR" + R — R =0,

which is called an Euler equation.
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The Dirichlet problem on a disk

Interlude

Euler equations

An Euler equation is a second order ODE of the form
x2y" + axy’ + By = 0.
Its solutions are determined by the roots of its indicial equation

P’ +(a—1)p+p=0.

Case 1: If the roots are p1 # pa, then the general solution is

y = a1 x”t + cxP2.

Case 2: If there is only one root p1, then the general solution is

y = ax' + oxPtIn x.

[BETILLEY Polar coordinates



The Dirichlet problem on a disk

Solving for R

The indicial equation of r’R” + rR' — n?R =0is
P+A-1Dp—n’=p*—n>=0 = p=+n.

This means that

R=car"+cr™" (n#0),
R=ca+clnr (n=0).

These will be finite at r = 0 only if ¢ = 0. Setting c; = a~" gives

R=R,= (g) n e No.
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The Dirichlet problem on a disk

Separated solutions and superposition

We therefore obtain the separated solutions
un(r,0) = Ra(r)©,(0) = (g)n (an cos(nB) + by sin(nd)), n € Ny.

Noting that
0
U()(r, 0) = (g) (30 cos0 + bo sin 0) = ag,

superposition gives the general solution

(r,0) =ao+ Z ( ) an cos(nf) + b, sin(nb)) .
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The Dirichlet problem on a disk

Boundary values and conclusion

Imposing our Dirichlet boundary conditions gives

f(0) = u(a,0) = ao + Z (ancos(nf) + bysin(nf)),
n=1

which is just the ordinary 27-periodic Fourier series for f!

Theorem

The solution of the Dirichlet problem on the disk of radius a
centered at the origin, with boundary condition u(a,0) = f(0) is
u(r,0) = ao + 3.1 (£)" (ancos(nf) + b,sin(nd)) , where

1 27
= f(0)do
a0 21 Jy ( ) )
1 o 1 27
a, = / £(0) cos(nb) db, b, = / f(0)sin(nb) do.
™ Jo ™ Jo
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Example

Find the solution to the Dirichlet problem on a disk of radius 3
with boundary values given by

N(r+20) if F<0<0,
f(0)=q2(r—20) if 0<6<3,
0

LT 3

We have a = 3. The graph of f is

ol
B
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According to exercise 2.3.8 (with p =7, ¢ =30 and d = 7/2):

o0

15 120 1 — cos(nm/2
f(0) = 5t Z ng /2) cos(nf).
n=1

Hence, the solution to the Dirichlet problem is
120 1— 2
0 <r>n cos(nm/ )cos(nG).

15
u(r,0) = 5 + 2

T2
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Solve the Dirichlet problem on a disk of radius 2 with boundary
values given by f(6) = cos® . Express your answer in cartesian
coordinates.

We have a = 2 and

l1+cos(20) 1 1
— 29 _ — 4=
f(0) = cos“ 0 = > > + > cos(26),
which is a finite 27-periodic Fourier series (i.e. ag = 1/2,
a» = 1/2, and all other coefficients are zero).
Hence

1 2 1 1 r?cos(260
u(r,0) ==+ (%) : 5cos(20) =5 + rc085()‘
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Since cos(26) = cos? @ — sin? 6, we find that
r? cos(20) = r? cos? § — r?sin? 0 = x* — y?

and hence
1 r?cos(20) 1 x?>—y?
U=+ ———=_+4 :
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Solve the Dirichlet problem on a disk of radius 1 if the boundary
value is 50 in the first quadrant, and zero elsewhere.

We are given a=1, f(#) =50 for 0 < 0 < w/2 and f(#) =0
otherwise. The Fourier coefficients of f are

1 [7/? 25
ap = % ) 50d6 = 7,
1 [7/? i 2
ap = / 50 cos(nf) dO = M,
T nm

50sin(nf) d0 — 50(1—cos(n7r/2))’
nm

so that

n

- L
25+5 Z’n <S|n nm/2) cos(nf) 1 (1 — cos(nm/2)) sin(n0)> '

u(r, 6
n=1
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Remarks:

@ One can frequently use identities like (valid for |r| < 1)

Zrcos(ne):—éln(l—2rcose+r2)7

n

n=1

>, r"sin(nf) rsinf

Z ———= =arctan | ——— |,
o n 1—rcosf

to convert series solutions in polar coordinates to cartesian
expressions.

@ Using the second identity, one can show that the solution in
the preceding example is

u(x )*25—1—@ arctan | —2— ) + arctan | ——
A W 1—x 1-y))"
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